# Application of Ranked Set Sampling in Parameter Estimation of Cambanis-Type Bivariate Exponential Distribution

## DOI:

https://doi.org/10.6092/issn.1973-2201/11973## Keywords:

Ranked set sampling, Concomitants of order statistics, Cambanis-type bivariate exponential distribution, Best linear unbiased estimators## Abstract

Ranked set sampling (RSS) is an efficient technique for estimating parameters and is applicable whenever ranking on a set of sampling units can be done easily by a judgment method or based on an auxiliary variable. In this paper, we assume (X,Y) to have a Cambanis-type bivariate exponential (CTBE) distribution, where a study variable Y is difficult and/or expensive to measure and is correlated with an auxiliary variable X that is readily measurable. The auxiliary variable is used to rank the sampling units. This paper addresses the problem of estimation of the scale parameter associated with the Y-variable based on the RSS scheme and some of the other modified RSS schemes. Comparison between estimators is done through relative efficiency to find the best RSS scheme. The efficiency performance of the estimators under various RSS schemes is presented numerically and graphically through 2-D and 3-D plots. To study the performance of the proposed estimators through a simulation study we develop a Matlab function to simulate data from the CTBE distribution. The results are applied to a real data set on mercury concentration in large mouth bass from Florida.

## References

M. F. AL-SALEH, A. M. AL-ANANBEH (2007). Estimation of the means of the bivariate normal using moving extreme ranked set sampling with concomitant variable. Statistical Papers, 48, no. 2, pp. 179–195.

M. F. AL-SALEH, Y. A. DIAB (2009). Estimation of the parameters of Downton’s bivariate exponential distribution using ranked set sampling scheme. Journal of Statistical Planning and Inference, 139, no. 2, pp. 277–286.

L. J. BAIN (1978). Statistical Analysis of Reliability and Life-Testing Models: Theory and Methods. Marcel Dekker, New York.

V. BARNETT, K. MOORE (1997). Best linear unbiased estimates in ranked-set sampling with particular reference to imperfect ordering. Journal of Applied Statistics, 24, no. 6, pp. 697–710.

S.CAMBANIS (1977). Some properties and generalizations of multivariate Eyraud-Gumbel-Morgenstern distributions. Journal of Multivariate Analysis, 7, no. 4, pp. 551–559.

M. CHACKO (2016). Ordered extreme ranked set sampling and its application in parametric estimation. Journal of Statistical Theory and Applications, 15, no. 3, pp. 248–258.

M. CHACKO (2017). Bayesian estimation based on ranked set sample from Morgenstern type bivariate exponential distribution when ranking is imperfect. Metrika, 80, no. 3, pp. 333–349.

M. CHACKO, K. GHOSH (2016). Semiparametric Bayesian density estimation using ranked set sample in the presence of ranking error. Environmental and Ecological Statistics, 23, no. 2, pp. 301–316.

M. CHACKO, P. Y. THOMAS (2007). Estimation of a parameter of bivariate Pareto distribution by ranked set sampling. Journal of Applied Statistics, 34, no. 6, pp. 703–714.

M.CHACKO, P.Y.THOMAS (2008). Estimation of a parameter of Morgenstern type bivariate exponential distribution by ranked set sampling. Annals of the Institute of Statistical Mathematics, 60, no. 2, pp. 301–318.

H. A. DAVID, H. N. NAGARAJA (2004). Order Statistics. John Wiley & Sons, New York.

K. K. KAMALJA, R. D. KOSHTI (2019). Estimation of scale parameter of Morgenstern type bivariate generalized uniform distribution by ranked set sampling. Journal of Data Science, 17, no. 3, pp. 513–534.

R. D. KOSHTI, K. K. KAMALJA (2017). Estimation of scale parameter of a bivariate Lomax distribution by ranked set sampling. Model Assisted Statistics and Applications, 12, no. 2, pp. 107–113.

R. D. KOSHTI, K. K. KAMALJA (2021a). Efficient estimation of a scale parameter of bivariate Lomax distribution by ranked set sampling. Calcutta Statistical Association Bulletin, 73, no. 1, pp. 24–44.

R. D. KOSHTI, K. K. KAMALJA (2021b). Parameter estimation of Cambanis-type bivariate uniform distribution with ranked set sampling. Journal of Applied Statistics, 48, no. 1, pp. 61–83.

K. LAM, B. K. SINHA, Z. WU (1994). Estimation of parameters in a two-parameter exponential distribution using ranked set sample. Annals of the Institute of Statistical Mathematics, 46, no. 4, pp. 723–736.

T. R. LANGE, H. E. ROYALS, L. L. CONNOR (1993). Influence of water chemistry on mercury concentration in largemouth bass from Florida lakes. Transactions of the American Fisheries Society, 122, no. 1, pp. 74–84.

G. MCINTYRE (1952). A method for unbiased selective sampling using ranked sets. Australian journal of agricultural research, 3, no. 4, pp. 385–390.

M.MOHSIN, H. KAZIANKA, J. PILZ, A. GEBHARDT (2014). A new bivariate exponential distribution for modeling moderately negative dependence. Statistical Methods & Applications, 23, no. 1, pp. 123–148.

D. MORGENSTERN (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt fur Mathematische Statistik, 8, pp. 234–235.

H.MUTTLAK (1998). Median ranked set sampling with concomitant variables and a comparison with ranked set sampling and regression estimators. Environmetrics, 9, no. 3, pp. 255–267.

S.NADARAJAH, S. KOTZ (2006). Reliability for some bivariate exponential distributions. Mathematical Problems in Engineering, pp. 1–14.

N. U. NAIR, J. SCARIA, S. MOHAN (2016). The Cambanis family of bivariate distributions: properties and applications. Statistica, 76, no. 2, pp. 169–184.

H. M. SAMAWI, M. S. AHMED, W. ABU-DAYYEH (1996). Estimating the population mean using extreme ranked set sampling. Biometrical Journal, 38, no. 5, pp. 577–586.

M. H. SAMUH, A. I. AL-OMARI, N. KOYUNCU, et al. (2020). Estimation of the parameters of the new Weibull-Pareto distribution using ranked set sampling. Statistica, 80, no. 1, pp. 103–123.

J. SCARIA, N. U. NAIR (1999). On concomitants of order statistics from Morgenstern family. Biometrical Journal, 41, no. 4, pp. 483–489.

B. SEVINC, B. CETINTAV, M. ESEMEN, S. GURLER (2019). Rssampling: a pioneering package for ranked set sampling. The R Journal, 11, no. 1, pp. 401–415.

A. B. SHAIBU, H. A. MUTTLAK (2004). Estimating the parameters of the normal, exponential and gamma distributions using median and extreme ranked set samples. Statistica, 64, no. 1, pp. 75–98.

H. P. SINGH, V. MEHTA (2013). An improved estimation of parameters of Morgenstern type bivariate logistic distribution using ranked set sampling. Statistica, 73, no. 4, pp. 437–461.

S. L. STOKES (1977). Ranked set sampling with concomitant variables. Communications in Statistics-Theory and Methods, 6, no. 12, pp. 1207–1211.

S. L. STOKES (1980). Inferences on the correlation coefficient in bivariate normal populations from ranked set samples. Journal of the American Statistical Association, 75, no. 372, pp. 989–995.

S. TAHMASEBI, A. A. JAFARI (2014). Estimators for the parameter mean of Morgenstern type bivariate generalized exponential distribution using ranked set sampling. Statistics and Operations Research Transactions, 38, no. 2, p. 161–180.

B. THOMAS (2018). Concomitants of Order Statistics from Bivariate Generalized Morgenstern and Cambanis Families. Ph.D. thesis, Dissertation, Mahatma GandhiUniversity, India.

## Downloads

## Published

## How to Cite

*Statistica*,

*82*(2), 145–175. https://doi.org/10.6092/issn.1973-2201/11973

## Issue

## Section

## License

Copyright (c) 2022 Statistica

This work is licensed under a Creative Commons Attribution 3.0 Unported License.