A Review of More than One Hundred Pareto-Tail Index Estimators

Authors

  • Igor Fedotenkov European Commission

DOI:

https://doi.org/10.6092/issn.1973-2201/9533

Keywords:

Heavy tails, Pareto distribution, Tail index, Review

Abstract

Heavy-tailed distributions are often encountered in economics, finance, biology, telecommunications, geology, etc. The heaviness of a tail is measured by a tail index. Numerous methods for tail index estimation have been proposed. This paper reviews more than one hundred Pareto (and equivalent) tail index estimators. It focuses on univariate estimators for non-truncated data. We discuss the basic features of these estimators and provide their analytical expressions. As samples from heavy-tailed distributions are often analysed by researchers from various sciences, the paper provides nontechnical explanations of the methods, so as to be understood by researchers with intermediate skills in statistics. We also discuss the strengths and weaknesses of the estimators, if known. The main focus of the paper is semi-parametric estimators; however, a number of parametric estimators under-represented in previous reviews are also discussed. The paper can be viewed as a catalog or a reference work on Pareto-tail index estimators. A Monte-Carlo comparison of more than 90 estimators is presented.

References

I. B. ABAN, M. M.MEERSCHAERT (2001). Shifted Hill’s estimator for heavy tails. Communications in Statistics-Simulation and Computation, 30, no. 4, pp. 949–962.

I. B. ABAN, M. M. MEERSCHAERT (2004). Generalized least-squares estimators for the thickness of heavy tails. Journal of Statistical Planning and Inference, 119, no. 2, pp. 341–352.

F. AGTERBERG (1995). Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review, 37, no. 1, pp. 1–8.

R. L. AXTELL (2001). Zipf distribution of US firm sizes. Science, 293, no. 5536, pp.1818–1820.

J. N. BACRO, M. BRITO (1995). Weak limiting behaviour of a simple tail Pareto-index estimator. Journal of Statistical Planning and inference, 45, no. 1-2, pp. 7–19.

C. BAEK, V. PIPIRAS (2010). Estimation of parameters in heavy-tailed distribution when its second order tail parameter is known. Journal of Statistical Planning and Inference, 140, no. 7, pp. 1957–1967.

J. BEIRLANT, G. DIERCKX, Y. GOEGEBEUR, G. MATTHYS (1999). Tail index estimation and an exponential regression model. Extremes, 2, no. 2, pp. 177–200.

J. BEIRLANT, G. DIERCKX, A. GUILLOU (2005). Estimation of the extreme-value index and generalized quantile plots. Bernoulli, 11, no. 6, pp. 949–970.

J. BEIRLANT, G. DIERCKX, A. GUILLOU, C. ST˘A RIC˘A (2002). On exponential representations of log-spacings of extreme order statistics. Extremes, 5, no. 2, pp. 157–180.

J. BEIRLANT, F. FIGUEIREDO, M. I. GOMES, B. VANDEWALLE (2008). Improved reduced-bias tail index and quantile estimators. Journal of Statistical Planning and Inference, 138, no. 6, pp. 1851–1870.

J. BEIRLANT, A. GUILLOU (2001). Pareto index estimation under moderate right censoring. Scandinavian Actuarial Journal, 2001, no. 2, pp. 111–125.

J. BEIRLANT, A. GUILLOU, G. DIERCKX, A. FILS-VILLETARD (2007). Estimation of the extreme value index and extreme quantiles under random censoring. Extremes, 10, no. 3, pp. 151–174.

J. BEIRLANT, J. L. TEUGELS (1989). Asymptotic normality of Hill’s estimator. In J.HÜSLER, R. REISS (eds.), Extreme Value Theory. Lecture Notes in Statistics, Springer, New York, vol. 51, pp. 148–155.

J. BEIRLANT, P. VYNCKIER, J. L. TEUGELS (1996a). Excess functions and estimation of the extreme-value index. Bernoulli, 2, no. 4, pp. 293–318.

J. BEIRLANT, P. VYNCKIER, J. L. TEUGELS (1996b). Tail index estimation, Pareto quantile plots regression diagnostics. Journal of the American Statistical Association, 91, no. 436, pp. 1659–1667.

J. BENHABIB, A. BISIN, M. LUO (2017). Earnings inequality and other determinants of wealth inequality. American Economic Review, 107, no. 5, pp. 593–97.

J. BENHABIB, A. BISIN, S. ZHU (2011). The distribution of wealth and fiscal policy in economies with finitely lived agents. Econometrica, 79, no. 1, pp. 123–157.

J. BERAN, D. SCHELL (2012). On robust tail index estimation. Computational Statistics & Data Analysis, 56, no. 11, pp. 3430–3443.

J. BERAN, D. SCHELL, M. STEHLÍK (2014). The harmonic moment tail index estimator: Asymptotic distribution and robustness. Annals of the Institute of Statistical Mathematics, 66, no. 1, pp. 193–220.

V. BRAZAUSKAS, R. SERFLING (2000). Robust and efficient estimation of the tail index of a single-parameter Pareto distribution. North American Actuarial Journal, 4, no. 4, pp. 12–27.

M. BRILHANTE, M. GOMES, D. PESTANA (2014). The mean-of-order p extreme value index estimator revisited. In A. PACHECO, R. SANTOS, M. OLIVEIRA, C. PAULINO (eds.), New Advances in Statistical Modeling and Application, Springer, Berlin, pp. 163–175.

M. F. BRILHANTE, M. I. GOMES, D. PESTANA (2013). A simple generalisation of the Hill estimator. Computational Statistics & Data Analysis, 57, no. 1, pp. 518–535.

M. BRITO, L. CAVALCANTE, A. C. M. FREITAS (2016). Bias-corrected geometric-type estimators of the tail index. Journal of Physics A: Mathematical and Theoretical, 49, no. 21, pp. 1–38.

M. BRITO, A. C. M. FREITAS (2003). Limiting behaviour of a geometric-type estimator for tail indices. Insurance: Mathematics and Economics, 33, no. 2, pp. 211–226.

M. BRZEZINSKI (2016). Robust estimation of the Pareto tail index: a Monte Carlo analysis. Empirical Economics, 51, no. 1, pp. 1–30.

F. CAEIRO, M. I. GOMES (2002). A class of asymptotically unbiased semi-parametric estimators of the tail index. Test, 11, no. 2, pp. 345–364.

F. CAEIRO, M. I. GOMES (2006). A new class of estimators of a “scale” second order parameter. Extremes, 9, no. 3-4, pp. 193–211.

F. CAEIRO, M. I.GOMES, J. BEIRLANT, T. DEWET (2016). Mean-of-order p reduced-bias extreme value index estimation under a third-order framework. Extremes, 19, no. 4, pp. 561–589.

F. CAEIRO, M. I. GOMES, D. PESTANA (2005). Direct reduction of bias of the classical Hill estimator. Revstat, 3, no. 2, pp. 113–136.

T.CHANEY (2008). Distorted gravity: the intensive and extensive margins of international trade. American Economic Review, 98, no. 4, pp. 1707–1721.

G. CIUPERCA, C. MERCADIER (2010). Semi-parametric estimation for heavy tailed distributions. Extremes, 13, no. 1, pp. 55–87.

F. A. COWELL, E. FLACHAIRE (2007). Income distribution and inequality measurement: The problem of extreme values. Journal of Econometrics, 141, no. 2, pp. 1044–1072.

S. CSORGO, P. DEHEUVELS, D. MASON (1985). Kernel estimates of the tail index of a distribution. The Annals of Statistics, 13, pp. 1050–1077.

S. CSORGO, D. M.MASON (1985). Central limit theorems for sums of extreme values. In Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, vol. 98, pp. 547–558.

S. CSORGO, L. VIHAROS (1998). Estimating the tail index. In Asymptotic Methods in Probability and Statistics, Elsevier, pp. 833–881.

J. DANIELSSON, D. W. JANSEN, C. G. DE VRIES (1996). The method of moments ratio estimator for the tail shape parameter. Communications in Statistics-Theory and Methods, 25, no. 4, pp. 711–720.

K. P. DAS, S. C. HALDER (2016). Understanding extreme stock trading volume by generalized Pareto distribution. The North Carolina Journal of Mathematics and Statistics, 2, pp. 45–60.

Y. DAVYDOV, V. PAULAUSKAS, A. RACKAUSKAS (2000). More on p-stable convex sets in Banach spaces. Journal of Theoretical Probability, 13, no. 1, pp. 39–64.

L. DE HAAN, T. T. PEREIRA (1999). Estimating the index of a stable distribution. Statistics & Probability Letters, 41, no. 1, pp. 39–55.

L. DEHAAN, S. RESNICK (1998). On asymptotic normality of the Hill estimator. Stochastic Models, 14, no. 4, pp. 849–866.

L. DE HAAN, S. I. RESNICK (1980). A simple asymptotic estimate for the index of a stable distribution. Journal of the Royal Statistical Society. Series B, 42, no. 1, pp. 83–87.

L. D. DE HAAN, L. PENG (1998). Comparison of tail index estimators. Statistica Neerlandica, 52, no. 1, pp. 60–70.

L. F. M. DE HAAN (1970). On Regular Variation and its Application to the Weak Convergence of Sample Extremes. Mathematisch Centrum, Amsterdam, NL.

P. DEHEUVELS, E. HAEUSLER, D. M. MASON (1988). Almost sure convergence of the Hill estimator. In Mathematical Proceedings of the Cambridge Philosophical Society. vol. 104, pp. 371–381.

A. L. DEKKERS, J. H. EINMAHL, L.DEHAAN (1989). A moment estimator for the index of an extreme-value distribution. The Annals of Statistics, 17, no. 4, pp. 1833–1855.

H. DREES (1995). Refined Pickands estimators of the extreme value index. The Annals of Statistics, 23, no. 6, pp. 2059–2080.

H. DREES (1996). Refined Pickands estimators with bias correction. Communications in Statistics-Theory and Methods, 25, no. 4, pp. 837–851.

H. DREES (1998a). A general class of estimators of the extreme value index. Journal of Statistical Planning and Inference, 66, no. 1, pp. 95–112.

H. DREES (1998b). On smooth statistical tail functionals. Scandinavian Journal of Statistics, 25, no. 1, pp. 187–210.

H. DREES, L. DE HAAN, S. RESNICK, et al. (2000). How to make a Hill plot. The Annals of Statistics, 28, no. 1, pp. 254–274.

D. DUPUIS, M. TSAO (1998). A hybrid estimator for generalized Pareto and extreme value distributions. Communications in Statistics-Theory and Methods, 27, no. 4, pp. 925–941.

D. J. DUPUIS, S. MORGENTHALER (2002). Robust weighted likelihood estimators with an application to bivariate extreme value problems. Canadian Journal of Statistics, 30, no. 1, pp. 17–36.

D. J. DUPUIS, M.-P. VICTORIA-FESER (2006). A robust prediction error criterion for Pareto modelling of upper tails. Canadian Journal of Statistics, 34, no. 4, pp. 639–658.

M. FALK (1994). Efficiency of convex combinations of Pickands estimator of the extreme value index. Journal of Nonparametric Statistics, 4, no. 2, pp. 133–147.

Z. FAN (2004). Estimation problems for distributions with heavy tails. Journal of Statistical Planning and Inference, 123, no. 1, pp. 13–40.

R. FERRIERE, B. CAZELLES (1999). Universal power laws govern intermittent rarity in communities of interacting species. Ecology, 80, no. 5, pp. 1505–1521.

A. FEUERVERGER, P. HALL (1999). Estimating a tail exponent by modelling departure from a Pareto distribution. The Annals of Statistics, 27, no. 2, pp. 760–781.

A. FIALOVÁ, J. JURECKOVÁ, J. PICEK (2004). Estimating Pareto tail index based on sample means. REVSTAT–Statistical Journal, 2, no. 1, pp. 75–100.

M. FINKELSTEIN, H. G. TUCKER, J. ALAN VEEH (2006). Pareto tail index estimation revisited. North American Actuarial Journal, 10, no. 1, pp. 1–10.

M. FRAGA ALVES (1995). Estimation of the tail parameter in the domain of attraction of an extremal distribution. Journal of Statistical Planning and Inference, 45, no. 1-2, pp. 143–173.

M. FRAGA ALVES (2001). A location invariant Hill-type estimator. Extremes, 4, no. 3, pp. 199–217.

M. FRAGA ALVES, M. I. GOMES, L. DE HAAN (2003). A new class of semi-parametric estimators of the second order parameter. Portugaliae Mathematica, 60, no. 2, pp. 193–214.

M. I. FRAGA ALVES, M. I. GOMES, L. DE HAAN, C. NEVES (2009). Mixed moment estimator and location invariant alternatives. Extremes, 12, no. 2, pp. 149–185.

X. GABAIX (2009). Power laws in economics and finance. Annual Review of Economics, 1, no. 1, pp. 255–294.

X.GABAIX, P.GOPIKRISHNAN, V. PLEROU, H. E. STANLEY (2003). A theory of power law distributions in financial market fluctuations. Nature, 423, no. 6937, pp. 267–270.

X. GABAIX, R. IBRAGIMOV (2011). Rank- 1/2: a simple way to improve the OLS estimation of tail exponents. Journal of Business & Economic Statistics, 29, no. 1, pp. 24–39.

X. GABAIX, A. LANDIER (2008). Why has CEO pay increased so much? The Quarterly Journal of Economics, 123, no. 1, pp. 49–100.

J. L.GASTWIRTH (1972). The estimation of the Lorenz curve and Gini index. The Review of Economics and Statistics, 54, pp. 306–316.

M. I. GOMES, M. I. F. ALVES, P. A. SANTOS (2008). PORT Hill and moment estimators for heavy-tailed models.

Communications in Statistics - Simulation and Computation, 37, no. 7, pp. 1281–1306.

M. I.GOMES, F.CAEIRO, F. FIGUEIREDO (2004). Bias reduction of a tail index estimator through an external estimation of the second-order parameter. Statistics, 38, no. 6, pp. 497–510.

M. I. GOMES, F. FIGUEIREDO, S. MENDONÇA (2005a). Asymptotically best linear unbiased tail estimators under a second-order regular variation condition. Journal of Statistical Planning and Inference, 134, no. 2, pp. 409–433.

M. I. GOMES, A. GUILLOU (2015). Extreme value theory and statistics of univariate extremes: A review. International Statistical Review, 83, no. 2, pp. 263–292.

M. I. GOMES, L. HENRIQUES-RODRIGUES (2016). Competitive estimation of the extreme value index. Statistics & Probability Letters, 117, pp. 128–135.

M. I. GOMES, L. HENRIQUES-RODRIGUES, B. MANJUNATH (2016). Mean-of-order-p location-invariant extreme value index estimation. Revstat, 14, no. 3, pp. 273–296.

M. I. GOMES, M. J. MARTINS (2001). Generalizations of the Hill estimator–asymptotic versus finite sample behaviour. Journal of Statistical Planning and Inference, 93, no. 1-2, pp. 161–180.

M. I.GOMES, M. J.MARTINS (2002). Asymptotically unbiased estimators of the tail index based on external estimation of the second order parameter. Extremes, 5, no. 1, pp. 5–31.

M. I. GOMES, M. J. MARTINS (2004). Bias reduction and explicit semi-parametric estimation of the tail index. Journal of Statistical Planning and Inference, 124, no. 2, pp. 361–378.

M. I. GOMES, M. J. MARTINS, M. NEVES (2000). Alternatives to a semi-parametric estimator of parameters of rare events - the jackknife methodology. Extremes, 3, no. 3, pp. 207–229.

M. I. GOMES, M. J.MARTINS, M. NEVES (2002). Generalized jackknife semi-parametric estimators of the tail index. Portugaliae Mathematica, 59, no. 4, pp. 393–408.

M. I. GOMES, M. J. MARTINS, M. NEVES (2007a). Improving second order reduced bias extreme value index estimation. Revstat, 5, no. 2, pp. 177–207.

M. I. GOMES, C. MIRANDA, C. VISEU (2007b). Reduced-bias tail index estimation and the jackknife methodology. Statistica Neerlandica, 61, no. 2, pp. 243–270.

M. I. GOMES, O. OLIVEIRA (2003). Maximum likelihood revisited under a semiparametric context-estimation of the tail index. Journal of Statistical Computation and Simulation, 73, no. 4, pp. 285–301.

M. I. GOMES, H. PEREIRA, M. C.MIRANDA (2005b). Revisiting the role of the jackknife methodology in the estimation of a positive tail index. Communications in Statistics- Theory and Methods, 34, no. 2, pp. 319–335.

P. GROENEBOOM, H. LOPUHÄ, P. DE WOLF (2003). Kernel-type estimators for the extreme value index. The Annals of Statistics, 31, no. 6, pp. 1956–1995.

E. HAEUSLER, J. L. TEUGELS (1985). On asymptotic normality of Hill’s estimator for the exponent of regular variation. The Annals of Statistics, 13, no. 1, pp. 743–756.

P. HALL (1982). On some simple estimates of an exponent of regular variation. Journal of the Royal Statistical Society. Series B, 44, no. 1, pp. 37–42.

P. HALL, A. WELSH (1985). Adaptive estimates of parameters of regular variation. The Annals of Statistics, 13, pp. 331–341.

B. M. HILL (1975). A simple general approach to inference about the tail of a distribution. The Annals of Statistics, 3, no. 5, pp. 1163–1174.

J. HINLOOPEN, C. VAN MARREWIJK (2012). Power laws and comparative advantage. Applied Economics, 44, no. 12, pp. 1483–1507.

J. R. M. HOSKING, J. R. WALLIS (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29, no. 3, pp. 339–349.

F.HUEBNER, D. LIU, J. FERNANDEZ (1998). Queueing performance comparison of traffic models for internet traffic. In Global Telecommunications Conference, 1998. GLOBECOM 1998. The Bridge to Global Integration. IEEE, vol. 1, pp. 471–476.

R. HUISMAN, K. G. KOEDIJK, C. J. M. KOOL, F. PALM (2001). Tail-index estimates in small samples. Journal of Business & Economic Statistics, 19, no. 2, pp. 208–216.

J. HÜSLER, D. LI, S. MÜLLER (2006). Weighted least squares estimation of the extreme value index. Statistics & Probability Letters, 76, no. 9, pp. 920–930.

J. JURECKOVÁ (2000). Test of tails based on extreme regression quantiles. Statistics & Probability Letters, 49, no. 1, pp. 53–61.

J. JURECKOVÁ, J. PICEK (2001). A class of tests on the tail index. Extremes, 4, no. 2, pp. 165–183.

J. JURECKOVÁ, J. PICEK (2004). Estimates of the tail index based on nonparametric tests.

In M.HUBERT, G. PISON, A. STRUYF, S.VAN AELST (eds.), Theory and Applications of Recent Robust Methods, Springer, pp. 141–152.

T. KAIZOJI (2003). Scaling behavior in land markets. Physica A: Statistical Mechanics and its Applications, 326, no. 1-2, pp. 256–264.

S. KANG, J. SONG (2017). Parameter and quantile estimation for the generalized Pareto distribution in peaks over threshold framework. Journal of the Korean Statistical Society, 46, no. 4, pp. 487–501.

K. KNIGHT (2007). A simple modification of the Hill estimator with applications to robustness and bias reduction. Unpublished paper, Statistics Department, University of Toronto.

M. KRATZ, S. I. RESNICK (1996). The qq-estimator and heavy tails. Stochastic Models, 12, no. 4, pp. 699–724.

R. LEPAGE, M.WOODROOFE, J. ZINN (1981). Convergence to a stable distribution via order statistics. The Annals of Probability, 9, no. 4, pp. 624–632.

J. LI, Z. PENG, S. NADARAJAH (2008). A class of unbiased location invariant Hill-type estimators for heavy tailed distributions. Electronic Journal of Statistics, 2, pp. 829–847.

B. MANDELBROT (1963). The variation of certain speculative prices. The Journal of Business, 36, pp. 394–419.

D. M. MASON (1982). Laws of large numbers for sums of extreme values. The Annals of Probability, 10, no. 3, pp. 754–764.

T. MCELROY (2007). Tail index estimation for parametric families using log moments. Research Report Series (Statistics Nr. 2007-2).

T. MCELROY, D. N. POLITIS (2007). Moment-based tail index estimation. Journal of Statistical Planning and Inference, 137, no. 4, pp. 1389–1406.

M. M. MEERSCHAERT, H.-P. SCHEFFLER (1998). A simple robust estimation method for the thickness of heavy tails. Journal of Statistical Planning and Inference, 71, no. 1, pp. 19–34.

S. MITTNIK, S. T. RACHEV (1993). Modeling asset returns with alternative stable distributions. Econometric Reviews, 12, no. 3, pp. 261–330.

S. MÜLLER, K. RUFIBACH (2009). Smooth tail-index estimation. Journal of Statistical Computation and Simulation, 79, no. 9, pp. 1155–1167.

U. K.MÜLLER, Y.WANG (2017). Fixed-k asymptotic inference about tail properties. Journal of the American Statistical Association, 112, no. 519, pp. 1334–1343.

E. A. NADARAYA (1964). On estimating regression. Theory of Probability & Its Applications, 9, no. 1, pp. 141–142.

L.NÉMETH, A. ZEMPLÉNI (2017). Regression estimator for the tail index. arXiv preprint arXiv:1708.04815.

M. E. NEWMAN (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46, no. 5, pp. 323–351.

W. D. NORDHAUS (2012). Economic policy in the face of severe tail events. Journal of Public Economic Theory, 14, no. 2, pp. 197–219.

J. NUYTS (2010). Inference about the tail of a distribution: Improvement on the Hill estimator. International Journal of Mathematics and Mathematical Sciences, 2010, pp. 1–16.

T. OGWANG (2011). Power laws in top wealth distributions: Evidence from Canada. Empirical Economics, 41, no. 2, pp. 473–486.

V. PARETO (1897). Cours d’economie politique. Lausanne, Rouge.

V. PAULAUSKAS (2003). A new estimator for a tail index. Acta Applicandae Mathematica, 79, pp. 55–67.

V. PAULAUSKAS, M. VAIˇCIULIS (2011). Several modifications of DPR estimator of the tail index. Lithuanian Mathematical Journal, 51, no. 1, pp. 36–50.

V. PAULAUSKAS, M. VAIˇCIULIS (2012). Estimation of the tail index in the max aggregation scheme. Lithuanian Mathematical Journal, 52, no. 3, pp. 297–315.

V. PAULAUSKAS, M. VAIˇC IULIS (2013). On an improvement of Hill and some other estimators. Lithuanian Mathematical Journal, 53, no. 3, pp. 336–355.

V. PAULAUSKAS, M. VAIˇCIULIS (2017a). A class of new tail index estimators. Annals of the Institute of Statistical Mathematics, 69, no. 2, pp. 461–487.

V. PAULAUSKAS, M. VAIˇCIULIS (2017b). Comparison of the several parameterized estimators for the positive extreme value index. Journal of Statistical Computation and Simulation, 87, no. 7, pp. 1342–1362.

L. PENG (1998). Asymptotically unbiased estimators for the extreme-value index. Statistics & Probability Letters, 38, no. 2, pp. 107–115.

J. PICKANDS III (1975). Statistical inference using extreme order statistics. The Annals of Statistics, 3, no. 1, pp. 119–131.

V. PISARENKO, D. SORNETTE (2003). Characterization of the frequency of extreme earthquake events by the generalized Pareto distribution. Pure and Applied Geophysics, 160, no. 12, pp. 2343–2364.

D. N. POLITIS (2002). A new approach on estimation of the tail index. Comptes Rendus Mathematique, 335, no. 3, pp. 279–282.

Y. QI (2010). On the tail index of a heavy tailed distribution. Annals of the Institute of Statistical Mathematics, 62, no. 2, pp. 277–298.

M. H. QUENOUILLE (1956). Notes on bias in estimation. Biometrika, 43, no. 3/4, pp. 353–360.

K. T. ROSEN, M. RESNICK (1980). The size distribution of cities: An examination of the Pareto law and primacy. Journal of Urban Economics, 8, no. 2, pp. 165–186.

P.A. SANTOS, M.ALVES, M. I.GOMES (2006). Peaks over random threshold methodology for tail index and high quantile estimation. Revstat, 4, no. 3, pp. 227–247.

J. SCHULTZE, J. STEINEBACH (1996). On least squares estimates of an exponential tail coefficient. Statistics & Risk Modeling, 14, no. 4, pp. 353–372.

D. A. SEEKELL, M. L. PACE (2011). Does the Pareto distribution adequately describe the size-distribution of lakes? Limnology and Oceanography, 56, no. 1, pp. 350–356.

J. SEGERS (2001). Residual estimators. Journal of Statistical Planning and Inference, 98, no. 1-2, pp. 15–27.

J. SEGERS (2005). Generalized Pickands estimators for the extreme value index. Journal of Statistical Planning and Inference, 128, no. 2, pp. 381–396.

H. A. SIMON, C. P. BONINI (1958). The size distribution of business firms. The American Economic Review, 48, no. 4, pp. 607–617.

R. L. SMITH (1987). Estimating tails of probability distributions. The Annals of Statistics, 15, pp. 1174–1207.

K. T. SOO (2005). Zipf’s law for cities: A cross-country investigation. Regional science and urban Economics, 35, no. 3, pp. 239–263.

A. A. TODA (2012). The double power law in income distribution: Explanations and evidence. Journal of Economic Behavior & Organization, 84, no. 1, pp. 364–381.

A. A. TODA, K. WALSH (2015). The double power law in consumption and implications for testing Euler equations. Journal of Political Economy, 123, no. 5, pp. 1177–1200.

Y. M. TRIPATHI, S. KUMAR, C. PETROPOULOS (2014). Improved estimators for parameters of a Pareto distribution with a restricted scale. Statistical Methodology, 18, pp. 1–13.

M. VAIˇC IULIS (2009). An estimator of the tail index based on increment ratio statistics. Lithuanian Mathematical Journal, 49, no. 2, pp. 222–233.

M. VAIˇCIULIS (2012). Asymptotic properties of generalized DPR statistic. Lithuanian Mathematical Journal, 52, no. 1, pp. 95–110.

J. M. VAN ZYL (2012). A median regression model to estimate the parameters of the three parameter generalized Pareto distribution. Communications in Statistics-Simulation and Computation, 41, no. 4, pp. 544–553.

J. M. VAN ZYL (2015). Estimation of the shape parameter of a generalized Pareto distribution based on a transformation to Pareto distributed variables. Journal of Statistical Theory and Practice, 9, no. 1, pp. 171–183.

B. VANDEWALLE, J. BEIRLANT, A. CHRISTMANN, M. HUBERT (2007). A robust estimator for the tail index of Pareto-type distributions. Computational Statistics & Data Analysis, 51, no. 12, pp. 6252–6268.

M.-P. VICTORIA-FESER, E. RONCHETTI (1994). Robust methods for personal-income distribution models. Canadian Journal of Statistics, 22, no. 2, pp. 247–258.

L. VIHAROS (1999). Weighted least-squares estimators of tail indices. Probability and Mathematical Statistics, 19, no. 2, pp. 249–265.

C. WANG, G. CHEN (2016). A new hybrid estimation method for the generalized Pareto distribution. Communications in Statistics-Theory and Methods, 45, no. 14, pp. 4285–4294.

L.WEISS (1971). Asymptotic inference about a density function at an end of its range. Naval Research Logistics, 18, no. 1, pp. 111–114.

S. YUN (2000). A class of Pickands-type estimators for the extreme value index. Journal of Statistical Planning and Inference, 83, no. 1, pp. 113–124.

S. YUN (2002). On a generalized Pickands estimator of the extreme value index. Journal of Statistical Planning and Inference, 102, no. 2, pp. 389–409.

J. ZHANG (2007). Likelihood moment estimation for the generalized Pareto distribution. Australian & New Zealand Journal of Statistics, 49, no. 1, pp. 69–77.

J. ZHANG (2010). Improving on estimation for the generalized Pareto distribution. Technometrics, 52, no. 3, pp. 335–339.

J. ZHANG, M. A. STEPHENS (2009). A new and efficient estimation method for the generalized Pareto distribution. Technometrics, 51, no. 3, pp. 316–325.

J. ZHONG, X. ZHAO (2012). Modeling complicated behavior of stock prices using discrete self-excited multifractal process. Systems Engineering Procedia, 3, pp. 110–118.

G. K. ZIPF (1941). National Unity and Disunity; the Nation as a Bio-Social Organism. Principia Press, Bloomington, Indiana.

G. K. ZIPF (1949). Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley, Reading, Massachusetts.

Downloads

Published

2021-01-11

How to Cite

Fedotenkov, I. (2020). A Review of More than One Hundred Pareto-Tail Index Estimators. Statistica, 80(3), 245–299. https://doi.org/10.6092/issn.1973-2201/9533

Issue

Section

Articles