The Marshall-Olkin Generalized-G Family of Distributions with Applications

Authors

  • Haitham M. Yousof Benha University
  • Ahmed Z. Afify Benha University
  • Saralees Nadarajah University of Manchester
  • Gholamhossein Hamedani Marquette University
  • Gokarna Raj Aryal Purdue University Northwest

DOI:

https://doi.org/10.6092/issn.1973-2201/7662

Keywords:

Marshall-Olkin distribution, Order statistics, Parameter estimation, Simulation

Abstract

We introduce a new class of distributions called the Marshall-Olkin generalized-G family. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, order statistics are discussed. The maximum likelihood method is used for estimating the model parameters. The importance and flexibility of the new family are illustrated by means of two applications to real data sets.

References

A. Z. AFIFY, G. G. HAMEDANI, I. GHOSH, E. M. MEAD (2015a). The transmuted Marshall-Olkin Fréchet distribution: Properties and applications. International Journal of Probability and Statistics, 4, pp. 132–148.

A. Z. AFIFY, Z. M. NOFAL, N. S. BUTT (2014). Transmuted complementary Weibull geometric distribution. Pakistan Journal of Statistics and Operation Research, 10, pp. 435–454.

A. Z. AFIFY, Z. M. NOFAL, A. N. EBRAHEIM (2015b). Exponentiated transmuted generalized Rayleigh: A new four parameter Rayleigh distribution. Pakistan Journal of Statistics and Operation Research, 11, pp. 115–134.

A. Z. AFIFY, Z. M. NOFAL, H. M. YOUSOF, Y. M. EL GEBALY, N. S. BUTT (2015c). The transmutedWeibull Lomax distribution: Properties and application. Pakistan Journal of Statistics and Operation Research, 11, pp. 135–152.

M. ALIZADEH, G. M. CORDEIRO, E. BRITO, C. G. DEMÉTRIO (2015a). The beta Marshall-Olkin family of distributions. Journal of Statistical Distributions and Applications, 4, no. 2, pp. 1–18.

M. ALIZADEH, M. EMADI, M. DOOSTPARAST, G. M. CORDEIRO, E. ORTEGA, R. PESCIM (2015b). A new family of distributions: The Kumaraswamy odd log-logistic, properties and applications. Hacettepe Journal of Mathematics and Statistics, 44, pp. 1491–1512.

G. M. CORDEIRO, E. M.HASHIMOTO, E. M.ORTEGA (2014). The McDonald Weibull model. Statistics: A Journal of Theoretical and Applied Statistics, 48, pp. 256–278.

G. M. CORDEIRO, E. M. M. ORTEGA, S. NADARAJAH (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 349, pp. 1174–1197.

B. DIAS, G. M. CORDEIRO, M. ALIZADEH, P. R. D. MARINHO, H. F. C. COÊLHO (2016). Exponentiated Marshall-Olkin family of distributions. Journal of Statistical Distributions and Applications, 3, no. 15, pp. 1–21.

T. N. FLOR DE SANTANA, E. M. M. ORTEGA, G. M. CORDEIRO (2012). Kumaraswamy log-logistic distribution. Journal of Statistical Theory and Applications, 11, pp. 265–291.

W. GLÁNZEL (1987). A characterization theorem based on truncated moments and its application to some distribution families. In P. BAUER, F. KONECNY, W. WERTZ (eds.), Mathematical Statistics and Probability Theory, Springer, Dordrecht, pp. 75–84.

W. GLÁNZEL (1990). Some consequences of a characterization theorem based on truncated moments. Statistics: A Journal of Theoretical and Applied Statistics, 21, pp. 613–618.

R. C. GUPTA, P. L. GUPTA, R. D. GUPTA (1998). Modeling failure time data by Lehmann alternatives. Communications in Statistics - Theory and Methods, 27, pp. 887–904.

C. LEE, F. FAMOYE, O.OLUMOLADE (2007). Beta-Weibull distribution: Some properties and applications to censored data. Journal of Mordern Applied Statistical Methods, 6, no. 1, pp. 173–186.

E. T. LEE, J. W. WANG (2003). Statistical Methods for Survival Data Analysis. Wiley, New York.

A. LEMONTE, G. CORDEIRO (2013). An extended Lomax distribution. Statistics, 47, pp. 800–816.

A. W. MARSHALL, I. OLKIN (1997). A new methods for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84, pp. 641–652.

M. MEAD (2014). A new generalization of Burr XII distribution. Journal of Statistics: Advances in Theory and Applications, 12, no. 2, pp. 53–73.

M. MEAD (2015). Generalized inverse gamma distribution and its application in reliability. Communications in Statistics - Theory and Methods, 44, pp. 1426–1435.

M. E. MEAD, A. Z. AFIFY (2017). On five-parameter Burr XII distribution: Properties and applications. South African Statistical Journal, 51, no. 1, pp. 67–80.

D. MURTHY, M. XIE, R. JIANG (2004). Weibull Models. John Wiley Sons, Hoboken, NJ.

S. NADARAJAH, G. CORDEIRO, E. ORTEGA (2015). The Zografos-Balakrishnan-G family of distributions: Mathematical properties and applications. Communications in Statistics - Theory and Methods, 44, pp. 186–215.

S. NADARAJAH, A. K. GUPTA (2004). The beta Fréchet distribution. Far East Journal of Theoretical Statistics, 14, pp. 15–24.

Z. M. NOFAL, A. Z. AFIFY, H. M. YOUSOF, G. M. CORDEIRO (2017). The generalized transmuted-G family of distributions. Communications in Statistics–Theory and Methods, 46, pp. 4119–4136.

Downloads

Published

2018-12-21

How to Cite

Yousof, H. M., Afify, A. Z., Nadarajah, S., Hamedani, G., & Aryal, G. R. (2018). The Marshall-Olkin Generalized-G Family of Distributions with Applications. Statistica, 78(3), 273–295. https://doi.org/10.6092/issn.1973-2201/7662

Issue

Section

Articles