A Compendium of Copulas

Authors

  • Saralees Nadarajah University of Manchester
  • Emmanuel Afuecheta University of Manchester
  • Stephen Chan American University of Sharjah

DOI:

https://doi.org/10.6092/issn.1973-2201/7202

Keywords:

Bivariate distributions, Dependence, Independence, Multivariate distributions, Trivariate distributions

Abstract

Copulas are used to specify dependence between two or more random variables. The last few years have seen a surge of developments of parametric models for copulas. Here, we provide an up-to-date and a comprehensive review of known parametric copulas as well as applications and open problems. This review is believed to be the first of its kind.

References

N. H. ABEL (1826). Untersuchung der functionen zweier unabhängig veränderli chen grössen x und y wie f (x, y), welche die eigenschaft haben, dass f (z, f (x, y)) eine symmetrische function von x, y und z ist. Journal für die Reine und Angewandte Mathematik, 1, pp. 11–15.

E. K. AL-HUSSAINI, S. F. ATEYA (2006). A class of multivariate distributions and new copulas. Journal of the Egyptian Mathematical Society, 14, pp. 45–54.

M. M. ALI, N. N.MIKHAIL, M. S. HAQ (1978). A class of bivariate distributions including the bivariate logistic. Journal of Multivariate Analysis, 8, pp. 405–412.

C. ALSINA, M. J. FRANK, B. SCHWEIZER (2006). Associative Functions. Triangular Norms and Copulas. World Scientific, Singapore.

E. W. ANDERSEN (2005). Two-stage estimation in copula models used in family studies. Lifetime Data Analysis, 11, pp. 333–350.

A. ANDRONOV (2010). On a copula for failure times of system elements. In Mathematical and Statistical Models and Methods in Reliability. Springer Verlag, New York, pp. 39–50.

T. BACIGAL, V. JAGR, R.MESIAR (2011). Non-exchangeable random variables, Archimax copulas and their fitting to real data. Kybernetika, 47, pp. 519–531.

N. BALAKRISHNAN, C. D. LAI (2009). Continuous Bivariate Distributions. Springer Verlag, Dordrecht.

V. BARNETT (1980). Some bivariate uniform distributions. Communications in Statistics - Theory and Methods, 9, pp. 453–461.

H. BEKRIZADEH, G. A. PARHAM, M. R. ZADKARMI (2012). The new generalization of Farlie-Gumbel-Morgenstern copulas. Applied Mathematical Sciences, 6, pp. 3527–3533.

H. BEKRIZADEH, G. A. PARHAM, M. R. ZADKARMI (2013). Weighted Clayton copulas and their characterizations: Application to probable modeling of the hydrology data. Journal of Data Science, 11, pp. 293–303.

V. BENEŠ, J. STĚPÁN (1997). Distributions with Given Marginals and Moment Problems. Kluwer, Dordrecht.

G. BERNHART, M. E. ANEL, J. F. MAI, M. SCHERER (2013). Default models based on scale mixtures of Marshall-Olkin copulas: Properties and applications. Metrika, 76, pp. 179–203.

O. BOZKURT (2013). Mixtures of Farlie-Gumbel-Morgenstern copulas. Communications in Statistics - Simulation and Computation, 42, pp. 171–182.

I. BURR (1942). Cumulative frequency functions. Annals of Mathematical Statistics, 13, pp. 215–232.

S. CAMBANIS, S. HUANG, G. SIMONS (1981). On the theory of elliptically contoured distributions. Journal of Multivariate Analysis, 11, pp. 368–385.

P. CAPÉRAÀ, A. L. FOUGÈRES, C. GENEST (2000). Bivariate distributions with given extreme value attractor. Journal of Multivariate Analysis, 72, pp. 30–49.

H. CARLEY, M. D. TAYLOR (2002). A new proof of Sklar’s theorem. In Distributions with Given Marginals and Statistical Modelling. pp. 29–34.

J. A. CARNICERO, M. C. AUSIN, M. P. WIPER (2013). Non-parametric copulas for circular-linear and circular-circular data: An application to wind directions. Stochastic Environmental Research and Risk Assessment, 27, pp. 1991–2002.

J. C. C. CHAN, D. P. KROESE (2010). Efficient estimation of large portfolio loss probabilities in t -copula models. European Journal of Operational Research, 205, pp. 361–367.

A. CHARPENTIER, A. L. FOUGÈRES, C.GENEST, J.NEŠLEHOVÁ (2014). Multivariate Archimax copulas. Journal of Multivariate Analysis, 126, pp. 118–136.

U. CHERUBINI, F. DURANTE, S. MULINACCI (2015). Marshall-Olkin Distributions – Advances in Theory and Applications. Springer Verlag, Heidelberg.

U. CHERUBINI, E. LUCIANO, W. VECCHIATO (2004). Copula Methods in Finance. JohnWiley and Sons, Chichester.

U. CHERUBINI, S. ROMAGNOLI (2009). The dependence structure of running maxima and minima: Results and option pricing applications. Mathematical Finance, 20, pp. 35–58.

D. G. CLAYTON (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, pp. 141–151.

S. G. COLES, J. A. TAWN (1994). Statistical methods for multivariate extremes: An application to structural design (with discussion). Applied Statistics, 43, pp. 1–48.

R. D. COOK, M. E. JOHNSON (1981). A family of distributions for modeling nonelliptically symmetric multivariate data. Journal of the Royal Statistical Society: Series B, 43, pp. 210–218.

S. CORBELLA, D. D. STRETCH (2013). Simulating a multivariate sea storm using Archimedean copulas. Coastal Engineering, 76, pp. 68–78.

R. CORLESS, G.GONNET, D.HARE, D. JEFFREY, D. KNUTH (1996). On the Lambert W function. Advances in Computational Mathematics, 5, pp. 329–359.

H. COSSETTE, E. MARCEAU, F. MARRI (2011). Constant dividend barrier in a risk model with a generalized Farlie-Gumbel-Morgenstern copula. Methodology and Computing in Applied Probability, 13, pp. 487–510.

C. M. CUADRAS (2009). Constructing copula functions with weighted geometric means. Journal of Statistical Planning and Inference, 139, pp. 3766–3772.

C. M. CUADRAS, J. AUGÉ (1981). A continuous general multivariate distribution and its properties. Communications in Statistics - Theory and Methods, 10, pp. 339–353.

C. M. CUADRAS, J. FORTIANA, J. A. RODRÍGUEZ-LALLENA (2002). Distributions with Given Marginals and Statistical Modelling. Kluwer, Dordrecht.

R. DAKOVIC, C. CZADO (2011). Comparing point and interval estimates in the bivariate t -copula model with application to financial data. Statistical Papers, 52, pp. 709–731.

G. DALL’AGLIO, S. KOTZ, G. SALINETTI (1991). Probability Distributions with Given Marginals. Kluwer, Dordrecht.

W. F.DARSOW, B. NGUYEN, E.T. OLSEN (1992). Copulas and Markov processes. Illinois Journal of Mathematics, 36, pp. 600–642.

M. DAVY, A. DOUCET (2003). Copulas: A new insight into positive time-frequency distributions. IEEE Signal Processing Letters, 10, pp. 215–218.

C. DE MICHELE, G. SALVADORI (2003). A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. Journal of Geophysical Research, 108. ID 4067.

C. DE MICHELE, G. SALVADORI, M. CANOSSI, A. PETACCIA, R. ROSSO (2005). Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrological Engineering, 10, pp. 50–57.

C. DE MICHELE, G. SALVADORI, R. VEZZOLI, S. PECORA (2013). Multivariate assessment of droughts: Frequency analysis and dynamic return period. Water Resources Research, 49, pp. 6985–6994.

D. J. DE WAAL, P. H. A. J. M. VAN GELDER (2005). Modelling of extreme wave heights and periods through copulas. Extremes, 8, pp. 345–356.

S. DEMARTA, A. J. MCNEIL (2005). The t copula and related copulas. International Statistical Review, 73, pp. 111–129.

D. DIERS, M. ELING, S. D. MAREK (2012). Dependence modeling in non-life insurance using the Bernstein copula. Insurance: Mathematics and Economics, 50, pp. 430–436.

A. DOBRA, A. LENKOSKI (2011). Copula Gaussian graphical models and their application to modeling functional disability data. Annals of Applied Statistics, 5, pp. 969–993.

D. DROUET-MARI, S. KOTZ (2001). Correlation and Dependence. Imperial College Press, London.

F. DURANTE, J. FERNÁNDEZ-SÁNCHEZ, C. SEMPI (2012). Sklar’s theorem obtained via regularization techniques. Nonlinear Analysis: Theory, Methods and Applications, 75, pp. 769–774.

F. DURANTE, J. FERNÁNDEZ-SÁNCHEZ, C. SEMPI (2013). Atopological proof of Sklar’s theorem. Applied Mathematics Letters, 26, pp. 945–948.

F. DURANTE, J. J. QUESADA-MOLINA, C. SEMPI (2007). A generalization of the Archimedean class of bivariate copulas. Annals of the Institute of Statistical Mathematics, 59, pp. 487–498.

F. DURANTE, G. SALVADORI (2010). On the construction of multivariate extreme value models via copulas. Environmetrics, 21, pp. 143–161.

F. DURANTE, C. SEMPI (2015). Principles of Copula Theory. CRC Press, Florida.

V. DURRLEMAN, A. NIKEGHBALI, T. RONCALLI (2000). A note about the conjecture on Spearman’s rho and Kendall’s tau. Groupe de Recherche Opérationnelle, Crédit Lyonnais,Working Paper.

P. EMBRECHTS, F. LINDSKOG, A. J.MCNEIL (2003). Modelling dependence with copulas and applications to risk management. In S. RACHEV (ed.), Handbook of Heavy Tailed Distributions in Finance. Elsevier, North-Holland, Amsterdam, pp. 329–384.

S. ERYILMAZ (2011). Estimation in coherent reliability systems through copulas. Reliability Engineering and System Safety, 96, pp. 564–568.

G. EVIN, A. C. FAVRE (2008). A new rainfall model based on the Neyman-Scott process using cubic copulas. Water Resources Research, 44. W03433.

H. EYRAUD (1936). Les principes de la mesure des correlations. Ann. Univ. Lyon, III. Ser., Sect. A, 1, pp. 30–47.

H. B. FANG, K. T. FANG, S. KOTZ (2002). The meta-elliptical distributions with given marginals. Journal of Multivariate Analysis, 82, pp. 1–16.

K. T. FANG, S. KOTZ, K. W. NG (1990). Symmetric Multivariate and Related Distributions. Chapman and Hall, London.

D. J. G. FARLIE (1960). The performance of some correlation coefficients for a general bivariate distribution. Biometrika, 47, pp. 307–323.

O. P. FAUGERAS (2013). Sklar’s theorem derived using probabilistic continuation and two consistency results. Journal of Multivariate Analysis, 122, pp. 271–277.

M. FISCHER, G. HINZMANN (2006). A new class of copulas with tail dependence and a generalized tail dependence estimator. Department of Statistics and Econometrics, University of Erlangen-Näurnberg, Germany,Working Paper.

M. FISCHER, C. KÖCK (2012). Constructing and generalizing given multivariate copulas: A unifying approach. Statistics, 46, pp. 1–12.

J. P. FOUQUE, X. ZHOU (2008). Perturbed Gaussian copula. In J. P. FOUQUE, T. B. FOMBY, K. SOLNA (eds.), Econometrics and Risk Management. Emerald/JAI, Bingley, pp. 103–121.

G. FRAHM, M. JUNKER, A. SZIMAYER (2003). Elliptical copulas: Applicability and limitations. Statistics and Probability Letters, 63, pp. 275–286.

M. J. FRANK (1979). On the simultaneous associativity of f (x, y) and x + y - f (x, y). Aequationes Mathematicae, 21, pp. 194–226.

M. FRÉCHET (1958). Remarques au sujet de la note précédente. Comptes Rendus de l’Académie des Sciences Paris, 246, pp. 2719–2720.

E. W. FREES, E. VALDEZ (1998). Understanding relationships using copulas. North American Actuarial Journal, 2, pp. 1–26.

J. GALAMBOS (1975). Order statistics of samples from multivariate distributions. Journal of the American Statistical Association, 70, pp. 674–680.

J. E. GARCÍA, V. A. GONZÁLEZ-LÓPEZA (2014). Modeling of acoustic signal energies with a generalized Frank copula. a linguistic conjecture is reviewed. Communications in Statistics - Theory and Methods, 43, pp. 2034–2044.

C. GENEST (2005a). Preface. Canadian Journal of Statistics, 33, pp. 313–316.

C. GENEST (2005b). Preface. Insurance: Mathematics and Economics, 37, pp. 1–2.

C. GENEST, A. C. FAVRE, J. BÉLIVEAU, C. JACQUES (2007). Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resources Research, 43, pp. 1–12.

C. GENEST, R. J. MACKAY (1986). Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données. Canadian Journal of Statistics, 14, pp. 145–159.

C. GENEST, J. G. NEŠLEHOVÁ (2014). On tests of radial symmetry for bivariate copulas. Statistical Papers, 55, pp. 1107–1119.

C.GENEST, S.NEŠLEHOVÁ (2007). A primer on copulas for count data. ASTIN Bulletin, 37, pp. 475–515.

C. GENEST, B. RÉMILLARD, D. BEAUDOIN (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44, pp. 199–213.

C. GENEST, L. P. RIVEST (1989). A characterization of Gumbel’s family of extreme value distributions. Statistics and Probability Letters, 8, pp. 207–211.

I. GIJBELS, M. OMELKA, D. SZNAJDER (2010). Positive quadrant dependence tests for copulas. Canadian Journal of Statistics, 38, pp. 555–581.

N. GÜLPINAR, K. KATATA (2014). Modelling oil and gas supply disruption risks using extreme-value theory and copula. Journal of Applied Statistics, 41, pp. 2–25.

E. J. GUMBEL (1958). Distributions à plusieurs variables dont les marges sont données. Comptes Rendus de l’Académie des Sciences Paris, 246, pp. 2717–2719.

E. J. GUMBEL (1960). Bivariate exponential distributions. Journal of the American Statistical Association, 55, pp. 698–707.

J. HE, H. LI (2012). A Gaussian copula approach for the analysis of secondary phenotypes in case-control genetic association studies. Biostatistics, 13, pp. 497–508.

C. HERING, M. HOFERT, J. F. MAI, M. SCHERER (2010). Constructing hierarchical Archimedean copulas with Lévy subordinators. Journal of Multivariate Analysis, 101, pp. 1428–1433.

A. HERNÁNDEZ-BASTIDA, M. PILAR FERNÁNDEZ-SÁNCHEZ (2012). A Sarmanov family with beta and gamma marginal distributions: An application to the Bayes premium in a collective risk model. Statistical Methods and Applications, 21, pp. 391–409.

V.HERNÁNDEZ-MALDONADO, M.DIAZ-VIERA,A. ERDELY (2012). Ajoint stochastic simulation method using the Bernstein copula as a flexible tool for modeling nonlinear dependence structures between petrophysical properties. Journal of Petroleum Science and Engineering, 90-91, pp. 112–123.

M. HOFERT (2008). Sampling Archimedean copulas. Computational Statistics and Data Analysis, 52, pp. 5163–5174.

M. HOFERT, M. SCHERER (2011). CDO pricing with nested Archimedean copulas. Quantitative Finance, 11, pp. 775–787.

J. HOLMAN, G. RITTER (2010). A new copula for modeling tail dependence. URL https://ssrn.com/abstract=1665977.

P. HOUGAARD (1984). Life table methods for heterogeneous populations: Distributions describing for heterogeneity. Biometrika, 71, pp. 75–83.

C. P. HSU, C.W. HUANG,W. J. P. CHIOU (2012). Effectiveness of copula-extreme value theory in estimating value-at-risk: Empirical evidence from Asian emerging markets. Review of Quantitative Finance and Accounting, 39, pp. 447–468.

J. S. HUANG, S. KOTZ (1999). Modifications of the Farlie-Gumbel-Morgenstern distribution: A tough hill to climb. Metrika, 49, pp. 135–145.

W. HÜRLIMANN (2004a). Fitting bivariate cumulative returns with copulas. Computational Statistics and Data Analysis, 45, pp. 355–372.

W. HÜRLIMANN (2004b). Multivariate Fréchet copulas and conditional value-at-risk. International Journal of Mathematics and Mathematical Sciences, pp. 345–364.

J.HÜSLER, R. D.REISS (1989). Maxima of normal random vectors: Between independence and complete dependence. Statistics and Probability Letters, 7, pp. 283–286.

R. IBRAGIMOV (2009). Copula-based characterizations for higher order Markov processes. Econometric Theory, 25, pp. 819–846.

A. A. JAVID (2009). Copulas with truncation-invariance property. Communications in Statistics - Theory and Methods, 38, pp. 3756–3771.

P. JAWORSKI, F. DURANTE, W. HÄRDLE, T. RYCHLIK (2010). Copula Theory and Its Applications: Proceedings of the Workshop held in Warsaw, 25-26 September, 2009, volume 198 of Lecture Notes in Statistics. Springer Verlag, Berlin/Heidelberg.

P. JAWORSKI, F. DURANTE, W. K. HARDLE (2013). Copulae in Mathematical and Quantitative Finance. Springer Verlag, New York.

H. JOE (1990). Families of min-stable multivariate exponential and multivariate extreme value distributions. Statistics and Probability Letters, 9, pp. 75–81.

H. JOE (1993). Parametric families of multivariate distributions with given marginals. Journal of Multivariate Analysis, 46, pp. 262–282.

H. JOE (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

H. JOE (2014). Dependence Modeling with Copulas. CRC Press, London.

H. JOE, T.HU (1996). Multivariate distributions from mixtures of max-infinitely divisible distributions. Journal of Multivariate Analysis, 57, pp. 240–265.

H. JOE, R. L. SMITH, I. WEISSMAN (1992). Bivariate threshold methods for extremes. Journal of the Royal Statistical Society: Series B, 54, pp. 171–183.

Y. S. JUNG, J. K. KIM, J. KIM (2008). New approach of directional dependence in exchange markets using generalized FGM copula function. Communications in Statistics - Simulation and Computation, 37, pp. 772–788.

Y. S. JUNG, J. M. KIM, E. A. SUNGUR (2007). Directional dependence of truncation invariant FGM copula functions: Application to foreign exchange currency data.

S. C. KAO, R. S. GOVINDARAJU (2008). Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research, 44.

J. M. KIM, Y. S. JUNG, T. SODERBERG (2009). Directional dependence of genes using survival truncated FGM type modification copulas. Communications in Statistics - Simulation and Computation, 38, pp. 1470–1484.

J. M. KIM, E. A. SUNGUR (2004). New class of bivariate copulas. In Proceeding of the Spring Conference. Korean Statistical Society, Seoul.

L. KNOCKAERT (2002). A class of positive isentropic time-frequency distributions. IEEE Signal Processing Letters, 9, pp. 22–25.

K. J. KOEHLER, J. T. SYMANOWSKI (1995). Constructing multivariate distributions with specific marginal distributions. Journal of Multivariate Analysis, 55, pp. 261–282.

N. KOLEV, U. DOS ANJOS, B. V. M. MENDES (2006). Copulas: A review and recent developments. Stochastic Models, 22, pp. 617–660.

N. KOLEV, D. PAIVA (2009). Copula-based regression models: A survey. Journal of Statistical Planning and Inference, 139, pp. 3847–3856.

C. D. LAI, M. XIE (2000). A new family of positive quadrant dependence bivariate distributions. Statistics and Probability Letters, 46, pp. 359–364.

E. J. LEE, C. H. KIM, S. H. LEE (2011). Life expectancy estimate with bivariate Weibull distribution using Archimedean copula. International Journal of Biometrics and Bioinformatics, 5, pp. 149–161.

D. LI (2000). On default correlation: A copula function approach. Journal of Fixed Income, 9, pp. 43–54.

M. LI, M. BOEHNKE, G. R.ABECASIS, P. X. K. SONG (2006). Quantitative trait linkage analysis using Gaussian copulas. Genetics, 173, pp. 2317–2327.

X. LI, P. MIKUSIŃSKI, H. SHERWOOD, M. D. TAYLOR (1997). On approximation of copulas. In V. BENEŠ, J. STĚPÁN (eds.), Distributions with Given Marginals and Moment Problems. Kluwer Academic Publishers, Dordrecht, pp. 107–116.

E. LIEBSCHER (2005). Semiparametric density estimators using copulas. Communications in Statistics - Theory and Methods, 34, pp. 59–71.

C. H. LING (1965). Representation of associative functions. Publicationes Mathematicae Debrecen, 12, pp. 189–212.

A. LOJOWSKA, D. KUROWICKA, G. PAPAEFTHYMIOU, L. VAN DER SLUIS (2012). Stochastic modeling of power demand due to EVs using copula. IEEE Transactions on Power Systems, 27, pp. 1960–1968.

F. LOUZADA, A. K. SUZUKI, V. G. CANCHO, F. L. PRINCE, G. A. PEREIRA (2012). The long-term bivariate survival FGM copula model: An application to a Brazilian HIV data. Journal of Data Science, 10, pp. 511–535.

J. L. LOWIN (2010). The fourier copula: Theory and applications. URL

https://ssrn.com/abstract=1804664.

J. LU, W. J. TIAN, P. ZHANG (2008). The extreme value copulas analysis of the risk dependence for the foreign exchange data. In Proceedings of the 4th International Conference on Wireless Communications, Networking and Mobile Computing. Dalian, China, pp. 1–6.

X. LUO, P. V. SHEVCHENKO (2012). Bayesian model choice of grouped t -copula. Methodology and Computing in Applied Probability, 14, pp. 1097–1119.

J. F. MAI, S. SCHENK, M. SCHERER (2016). Exchangeable exogenous shock models. Bernoulli, 22, pp. 1278–1299.

J. F. MAI, M. SCHERER (2009). Lévy-frailty copulas. Journal of Multivariate Analysis, 100, pp. 1567–1585.

J. F. MAI, M. SCHERER (2011). Bivariate extreme-value copulas with discrete Pickands dependence measure. Extremes, 14, pp. 311–324.

J. F. MAI, M. SCHERER (2012). Simulating Copulas: Stochastic Models, Sampling Algorithms and Applications. Imperial College Press, London.

J. F. MAI, M. SCHERER (2014). Financial Engineering with Copulas Explained. Palgrave Macmillan, London.

Y.MALEVERGNE, D. SORNETTE (2006). Extreme Financial Risks: From Dependence to Risk Management. Springer Verlag, Berlin.

H. MANNER, O. REZNIKOVA (2012). A survey on time-varying copulas: Specification, simulations and application. Econometric Reviews, 31, pp. 654–687.

K. V.MARDIA (1970). Families of Bivariate Distributions. Hafner Publishing Company, Darien, Connecticut.

A. W. MARSHALL, I. OLKIN (1967). A generalized bivariate exponential distribution. Journal of Applied Probability, 4, pp. 291–302.

G. MASSONNET, P. JANSSEN, L. DUCHATEAU (2009). Modelling udder infection data using copula models for quadruples. Journal of Statistical Planning and Inference, 139, pp. 3865–3877.

G. MAYOR, J. SUNER, J. TORRENS (2007). Sklar’s theorem in finite settings. IEEE Transactions on Fuzzy Systems, 15, pp. 410–416.

A. J.MCNEIL (2008). Sampling nested Archimedean copulas. Journal of Statistical Computation and Simulation, 78, pp. 567–581.

A. J. MCNEIL, R. FREY, P. EMBRECHTS (2005). Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton.

A. J. MCNEIL, J. NEŠLEHOVÁ (2009). Multivariate Archimedean copulas, d-monotone functions and l1-normsymmetric distributions. Annals of Statistics, 37, pp. 3059–3097.

A. MEEL, W. D. SEIDER (2006). Plant-specific dynamic failure assessment using Bayesian theory. Chemical Engineering Science, 61, pp. 7036–7056.

C. MEYER (2013). The bivariate normal copula. Communications in Statistics - Theory and Methods, 42, pp. 2402–2422.

F. MICHIELS, A. DE SCHEPPER (2012). How to improve the fit of Archimedean copulas by means of transforms. Statistical Papers, 53, pp. 345–355.

R. MIRABBASI, A. FAKHERI-FARD, Y. DINPASHOH (2012). Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology, 108, pp. 191– 206.

I. MONTES, E. MIRANDA, R. PELESSONI, P. VICIG (2015). Sklar’s theorem in an imprecise setting. Fuzzy Sets and Systems, 278, pp. 48–66.

D. S. MOORE, M. C. SPRUILL (1975). Unified large-sample theory of general chi-squared statistics for tests of fit. Annals of Statistics, 3, pp. 599–616.

D. MORGENSTERN (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt für Mathematishe Statistik, 8, pp. 234–235.

R. B. NELSEN (1991). Copulas and association. In G. DALL’AGLIO, S. KOTZ, G. SALINETTI (eds.), Advances in Probability Distributions with Given Marginals. Beyond the Copulas. Dortrecht, Kluwer, pp. 51–74.

R. B. NELSEN (2002). Concordance and copulas: A survey. In C. M. CUADRAS, J. FORTIANA, J. A. RODRIGUEZ-LALLENA (eds.), Distributions with Given Marginals and Statistical Modelling. Kluwer, Dordrecht, pp. 169–177.

R. B. NELSEN (2006). An Introduction to Copulas. Springer Verlag, New York.

R. B. NELSEN, J. J. QUESADA-MOLINA, J. A. RODRÍGUEZ-LALLENA (1997). Bivariate copulas with cubic sections. Journal of Nonparametric Statistics, 7, pp. 205–220.

A. K. NIKOLOULOPOULOS, H. JOE, H. LI (2009). Extreme value properties of multivariate t copulas. Extremes, 12, pp. 129–148.

Y. NOH, K. K. CHOI, L. DU (2009). Reliability-based design optimization of problems with correlated input variables using a Gaussian copula. Structural and Multidisciplinary Optimization, 38, pp. 1–16.

D. OAKES (1982). A model for association in bivariate survival data. Journal of the Royal Statistical Society: Series B, 44, pp. 414–422.

F. OERTEL (2015). An analysis of the Rüschendorf transform - with a view towards Sklar’s theorem. Dependence Modelling, 3, pp. 113–125.

A. ONKEN, K. OBERMAYER (2009). A Frank mixture copula family for modeling higherorder correlations of neural spike counts. Journal of Physics: Conference Series, 197. ID 012019.

S. A. OSMETTI, R. CALABRESE (2013). Modelling cross-border bank contagion using Marshall-Olkin copula. In Proceedings of the Credit Scoring and Credit Control XIII Conference. Barcelona, Spain.

A. OZUN, A. CIFTER (2007). Estimating portfolio risk with conditional Joe-Clayton copula: An empirical analysis with Asian equity markets. IUP Journal of Financial Economics, 5, pp. 28–41.

A. J. PATTON (2012). A review of copula models for economic time series. Journal of Multivariate Analysis, 110, pp. 4–18.

G. PETTERE, T. KOLLO (2011). Risk modeling for future cash flow using skew t -copula. Communications in Statistics - Theory and Methods, 40, pp. 2919–2925.

J. PICKANDS (1981). Multivariate extreme value distributions (with discussion). Bulletin of the International Statistical Institute, 49, pp. 859–878.

R. L. PLACKETT (1965). A class of bivariate distributions. Journal of the American Statistical Association, 60, pp. 516–522.

D. PRANGE, W. SCHERER (2009). Correlation smile matching for collateralized debt obligation tranches with a-stable distributions and fitted Archimedean copula models. Quantitative Finance, 9, pp. 439–449.

C. PRAPROM, S. SRIBOONCHITTA (2014). Extreme value copula analysis of dependencies between exchange rates and exports of Thailand. In V. N. HUYNH, V. KREINOVICH, S. SRIBOONCHITTA (eds.), Modeling Dependence in Econometrics. Springer Verlag, New York, pp. 187–199.

A. E. RAFTERY (1984). A continuous multivariate exponential distribution. Communications in Statistics - Theory and Methods, 13, pp. 947–965.

M. RAM, S. B. SINGH (2010). Availability, MTTF and cost analysis of complex system under preemptive-repeat repair discipline using Gumbel-Hougaard family copula. International Journal of Quality and Reliability Management, 27, pp. 576–595.

M. J. REDDY, P. GANGULI (2012). Risk assessment of hydroclimatic variability on groundwater levels in the Manjara basin aquifer in India using Archimedean copulas. Journal of Hydrologic Engineering, 17, pp. 1345–1357.

P. RESSEL (2013). Homogeneous distributions and a spectral representation of classical mean values and stable tail dependence functions. Journal of Multivariate Analysis, 117, pp. 246–256.

O. ROCH, A. ALEGRE (2006). Testing the bivariate distribution of daily equity returns using copulas: An application to the Spanish stock market. Computational Statistics and Data Analysis, 51, pp. 1312–1329.

J. A. RODRÍGUEZ-LALLENA, M. ÚBEDA FLORES (2004). A new class of bivariate copulas. Statistics and Probability Letters, 66, pp. 315–325.

J. F. ROSCO, H. JOE (2013). Measures of tail asymmetry for bivariate copulas. Statistical Papers, 54, pp. 709–726.

L. RÜSCHENDORF (2009). On the distributional transform, Sklar’s theorem and the empirical copula process. Journal of Statistical Planning and Inference, 139, pp. 3921–3927.

L. RÜSCHENDORF (2013). Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer Verlag, Heidelberg.

L. RÜSCHENDORF, B. SCHWEIZER, M. D. TAYLOR (1996). Distributions with Fixed Marginals and Related Topics. Institute of Mathematical Statistics, Seattle, Washington.

G. SALVADORI, C. DE MICHELE (2004a). Analytical calculation of storm volume statistics involving Pareto-like intensity-duration marginals. Geophysical Research Letters, 31. ID L04502.

G. SALVADORI, C. DE MICHELE (2004b). Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resources Research, 40. W12511.

G. SALVADORI, C. DEMICHELE (2006). Statistical characterization of temporal structure of storms. Advances inWater Resources, 29, pp. 827–842.

G. SALVADORI, C. DE MICHELE (2010). Multivariate multiparameter extreme value models and return periods: A copula approach. Water Resources Research, 46. W10501.

G. SALVADORI, C. DE MICHELE (2015). Multivariate real-time assessment of droughts via copula-based multi-site Hazard Trajectories and Fans. Journal of Hydrology, 526, pp. 101–115.

G. SALVADORI, C. DE MICHELE, F. DURANTE (2011). On the return period and design in a multivariate framework. Hydrology and Earth System Sciences, 15, pp. 3293–3305.

G. SALVADORI, C. DE MICHELE, N. T. KOTTEGODA, R. ROSSO (2007). Extremes in Nature. An Approach Using Copulas. Springer Verlag, Dordrecht.

G. SALVADORI, F. DURANTE, C. DE MICHELE (2013). Multivariate return period calculation via survival functions. Water Resources Research, 49, pp. 2308–2311.

G. SALVADORI, F. DURANTE, C. DE MICHELE, M. BERNARDI, L. PETRELLA (2016). A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities. Water Resources Research, 52, pp. 3701–3721.

G. SALVADORI, F. DURANTE, G. R. TOMASICCHIO, F. DALESSANDRO (2015). Practical guidelines for the multivariate assessment of the structural risk in coastal and offshore engineering. Coastal Engineering, 95, pp. 77–83.

G. SALVADORI, G. R. TOMASICCHIO, F. DALESSANDRO (2014). Practical guidelines for multivariate analysis and design in coastal and offshore engineering. Coastal Engineering, 88, pp. 1–14.

A. SANCETTA, S. E. SATCHELL (2004). Bernstein copula and its applications to modelling and approximations of multivariate distributions. Econometric Theory, 20, pp. 535–562.

M. A. SANFINS, G. VALLE (2012). On the copula for multivariate extreme value distributions. Brazilian Journal of Probability and Statistics, 26, pp. 288–305.

O. V. SARMANOV (1966). Generalized normal correlation and two-dimensional Fréchet classes. Doklady Akademii Nauk SSSR, 168, pp. 596–599.

C. SAVU, M. TREDE (2010). Hierarchies of Archimedean copulas. Quantitative Finance, 10, pp. 295–304.

B. SCHMELZER (2015). Sklar’s theorem for minitive belief functions. International Journal of Approximate Reasoning, 63, pp. 48–61.

V. SCHMITZ (2004). Revealing the dependence structure between x(1) and x(n). Journal of Statistical Planning and Inference, 123, pp. 41–47.

B. SCHWEIZER (1991). Thirty years of copulas. In G. DALL’AGLIO, S. KOTZ, G. SALINETTI (eds.), Probability Distributions with Given Marginals. Kluwer, Dordrecht, pp. 13–50.

B. SCHWEIZER, A. SKLAR (2005). Probabilistic Metric Spaces. Dover, Mineola, New York.

C. SEMPI (2016). Copulae of processes related to the Brownian motion: A brief survey. In S. SAMINGER-PLATZ, R. MESIAR (eds.), On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory, Studies in Fuzziness and Soft Computing. Springer International Publishing, Switzerland, pp. 173–180.

A. SHAMIRI,N. A.HAMZAH, A. PIRMORADIAN (2011). Tail dependence estimate in financial market risk management: Clayton-Gumbel copula approach. Sains Malaysiana, 40, pp. 927–935.

J. H. SHIH, T. A. LOUIS (1995). Inferences on the association parameter in copula models for bivariate survival data. Biometrics, 51, pp. 1384–1399.

A. SKLAR (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris, 8, pp. 229–231.

S. SONG, V. P. SINGH (2010). Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment, 24, pp. 783–805.

W. SUN, S. RACHEV, S. V. STOYANOV, F. J. FABOZZI (2008). Multivariate skewed Student’s t copula in the analysis of nonlinear and asymmetric dependence in the German equity market. Studies in Nonlinear Dynamics and Econometrics, 12.

J. A. TAWN (1988). Bivariate extreme value theory: Models and estimation. Biometrika, 75, pp. 397–415.

A. WANG (2007). The analysis of bivariate truncated data using the Clayton copula model. International Journal of Biostatistics, 3, pp. 1557–4679.

G. WEI, T. HU (2002). Supermodular dependence ordering on a class of multivariate copulas. Statistics and Probability Letters, 57, pp. 375–385.

N. WHELAN (2004). Sampling from Archimedean copulas. Quantitative Finance, 4, pp. 339–352.

C. WONG (2013). A comparison between the Gumbel-Hougaard and distorted Frank copulas for drought frequency analysis. International Journal of Hydrology Science and Technology, 3, pp. 77–91.

K. XIE, Y. LI, W. LI (2012). Modelling wind speed dependence in system reliability assessment using copulas. IET Renewable Power Generation, 6, pp. 392–399.

J. YANG, Y. QI, R. WANG (2009). A class of multivariate copulas with bivariate Fréchet marginal copulas. Insurance: Mathematics and Economics, 45, pp. 139–147.

X. YANG, E. W. FREES, Z. ZHANG (2011). A generalized beta copula with applications in modeling multivariate long-tailed data. Insurance: Mathematics and Economics, 49, pp. 265–284.

J. YU, K. CHEN, J. MORI, M. M. RASHID (2013). A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction. Energy, 61, pp. 673–686.

H. ZHANG, J. ZHANG, M. KUWANO (2012). An integrated model of tourists’ time use and expenditure behaviour with self-selection based on a fully nested Archimedean copula function. Tourism Management, 33, pp. 1562–1573.

L. ZHANG, V. P. SINGH (2007a). Bivariate rainfall frequency distributions using Archimedean copulas. Journal of Hydrology, 332, pp. 93–109.

L. ZHANG, V. P. SINGH (2007b). Trivariate flood frequency analysis using the Gumbel-Hougaard copula. Journal of Hydrologic Engineering, 12, pp. 431–439.

Z. ZHANG (2009). On approximating max-stable processes and constructing extremal copula functions. Statistical Inference for Stochastic Processes, 12, pp. 89–114.

Y. ZHENG, J.YANG, J. Z.HUANG (2011). Approximation of bivariate copulas by patched bivariate Fréchet copulas. Insurance: Mathematics and Economics, 48, pp. 246–256.

Downloads

Published

2018-03-29

How to Cite

Nadarajah, S., Afuecheta, E., & Chan, S. (2017). A Compendium of Copulas. Statistica, 77(4), 279–328. https://doi.org/10.6092/issn.1973-2201/7202

Issue

Section

Articles