Probabilistic assessment of symptomless inflammation in Crohn's Disease patients


  • Michele Scagliarini Alma Mater Studiorum - Università di Bologna
  • Andrea Belluzzi Gastroenterology Unit, S. Orsola-Malpighi Hospital
  • Eleonora Scaioli Gastroenterology Unit, S. Orsola-Malpighi Hospital
  • Carla Cardamone Gastroenterology Unit, S. Orsola-Malpighi Hospital



Logistic Regression, Odds Ratio, Risk Assessment, Diagnostic Rule


In Crohn’s Disease it is extremely important to detect the presence of symptomless mucosal inflammation in such a way as to prevent the evolution of the disease. The aim of this study is to identify predictor variables for estimating the risk of the presence of mucosal inflammation. The results show that the estimated model provides a clear picture of the relationship among the selected predictors and the outcome of interest and has a very appreciable ability for identifying patients at high risk of symptomless but persistent inflammation.


C. AF BJÖRKESTEN, U. NIEMINEN, U. TURUNEN, P. ARKKILA, T. SIPPONEN, M. FÄRKILLÄ (2012). Surrogate markers and clinical indices, alone or combined, as indicators for endoscopic remission in anti-TNF-treated luminal Crohn’s disease, 47(5), pp. 528-537.

A. AGRESTI (2002). Categorical Data Analysis, 2nd ed. Wiley, Hoboken.

W. BEST, J. BECKTEL, J. SINGLETON, F .JR KERN (1976). Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology, 70(3), pp. 439-444.

C. BRIGNOLA, G. LANFRANCHI, M. CAMPIERI, G. BAZZOCCHI, M. DEVOTO, P. BONI, P. FARRUGGIA, S. VEGGETTI, A. TRAGNONE (1986). Importance of laboratory parameters in the evaluation of Crohn’s disease activity. Journal of Clinical Gastroenterology, 8(3), pp. 245-248.

C. CELLIER, T. SAHMOUD, E. FROGUEL, A. ADENIS, J. BELAICHE, J. BRETAGNE, C. FLORENT, M. BOUVRY, J. MARY, R. MODIGLIANI (1994). Correlations between clinical activity, endoscopic severity, and biological parameters in colonic or ileocolonic Crohn’s disease. A prospective multicentre study of 121 cases. The Groupe d’Etudes Thrapeutiques des Affections Inflammatoires Digestives. Gut, 35(2), pp. 231-235.

J. GISBERT, F. BERMEJO, J. PREZ-CALLE, C. TAXONERA, I. VERA, A. MCNICHOLL, A. ALGABA, P. LPEZ, N. LPEZ-PALACIOS, M. CALVO, Y. GONZLEZ-LAMA, J. CARNEROS, M. VELASCO, J. MATÉ (2009). Faecal calprotectin and lactoferrin for the prediction of inflammatory bowel disease relapse. Inflammatory Bowel Diseases, 15(8), pp. 1190-1198.

F. E. JR HARRELL (2014). rms: Regression Modeling Strategies. R package version 4.1-1.

D.W. JR HOSMER, S. LEMESHOW, R. X. STURDIVANT (2013). Applied Logistic Regression 3rd edn. Wiley, Hoboken.

J. JONES, E. JR LOFTUS, R. PANACCIONE, L. CHEN, S. PETERSON, J. MC-CONNELL, L. BAUDHUIN, K. HANSON, B. FEAGAN, S. HARMSEN, A. ZINSMEISTER, E. HELOU, W. SANDBORN (2008). Relationships between disease activity and serum and fecal biomarkers in patients with Crohn’s disease. Clinical Gastroenterology and Hepatology, 6(11), pp. 1218-1224.

J. LANGHORST, S. ELSENBRUCH, J. KOELZER, A. RUEFFER, A. MICHALSEN, G. DOBOS (2008). Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. The American Journal of Gastroenterology, 103(1), pp. 162-169.

S. LE CESSIE, J. C. VAN HOUWELINGEN (1991). A Goodness-of-Fit Test for

Binary Regression Models, Based on Smoothing Methods. Biometrics, 47,


B. PARIENTE, J. COSNES, S. DANESE, W. SANDBORN, M. LEWIN, J. FLETCHER, Y. CHOWERS, G. D’HAENS, B. FEAGAN, T. HIBI, D. HOMMES, E. IRVINE, M. KAMM, E. JR. LOFTUS, E. LOUIS, P. MICHETTI, P. MUNKHOLM, T. ORESLAND, J. PAN´ES, L. PEYRIN-BIROULET, W. REINISCH, B. SANDS, J. SCHOELMERICH, S. SCHREIBER, H. TILG, S. TRAVIS, G. VAN ASSCHE, M. VECCHI, J. MARY, J. COLOMBEL, M. LMANN (2011). Development of the Crohn’s disease digestive damage score, the Lmann score. Inflammatory Bowel Diseases, 17(6), pp. 1415-1422.

R CORE TEAM (2013). R: A Language and Environment for Statistical Computing, R Foundation for Statistical, Vienna, Austria. URL http://www.Rproject. org/.

R. ROYSTON, D. G. ALTMAN (2010). Visualizing and assessing discrimination in the logistic regression model. Statistics in Medicine, 29, pp.2508-2520.

A. RØSETH, P. SCHMIDT, M. FAGERHOL (1999). Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scandinavian Journal of Gastroenterology, 34(1), pp. 50-54.

T. SIPPONEN, E. SAVILAHTI, K. KOLHO, H. NUUTINEN, U. TURUNEN, M. FÄRKKILÄ (2008). Crohn’s disease activity assessed by faecal calprotectin and lactoferrin: correlation with Crohn’s disease activity index and endoscopic findings. Inflammatory Bowel Diseases, 14(1), pp. 50-46.

E. W. STEYERBERG, A. J. VICKERS, N. R. COOK, T. GERDS, M. GONEN, N. OBUCHOWSKI, M. J. PENCINA, M. W. KATTAN (2010). Assessing the Performance of Prediction Models A Framework for Traditional and Novel Measures. Epidemiology, 21, pp.128-138.

E. YOSHIDA (1999). The Crohn’s Disease Activity Index, its derivatives and the Inflammatory Bowel Disease Questionnaire: a review of instruments to assess Crohn’s disease. Canadian journal of gastroenterology, 13(1), pp. 65-73.

W. J. YOUDEN (1950). Index for rating diagnostic tests. Cancer, 3, pp.32-35.




How to Cite

Scagliarini, M., Belluzzi, A., Scaioli, E., & Cardamone, C. (2016). Probabilistic assessment of symptomless inflammation in Crohn’s Disease patients. Statistica, 76(4), 301–314.