# Sharma-Mittal Entropy Properties on Record Values

## DOI:

https://doi.org/10.6092/issn.1973-2201/6621## Keywords:

Record values, Sharma-Mittal entropy, Maximum entropy principle, Characterization, Concomitants of record values, Residual Sharma-Mittal entropy## Abstract

In this paper we derive Sharma-Mittal entropy of record values and analyse some of its important properties. We establish some bounds for the Sharma-Mittal entropy of record values. We generate a characterization result based on the properties of Sharma-Mittal entropy of record values for exponential distribution. We further establish some distribution free properties of Sharma-Mittal divergence information between distribution of a record value and the parent distribution. We extend the concept of Sharma-Mittal entropy to the concomitants of record values arising from a Farlie-Gumbel-Morgenstern (FGM) bivariate distribution. Also we consider residual Sharma-Mittal Entropy and used it to describe some properties of record values.## References

M. ABBASNEJAD, N. R. ARGHAMI (2011). Rényi entropy properties of records. Journal of Statistical Planning and Inference, 141, pp. 2312-2320.

J. AHMADI, M. FASHANDI (2012). Characterizations of symmetric distributions based on Rényi entropy. Statistics & Probability Letters, 82, pp. 798-804.

E. AKTÜRK, G. BAGCI, R. SEVER (2007). Is Sharma-Mittal entropy really a step beyond Tsallis and Rényi entropies? arXiv preprint cond-mat/0703277.

O. Ü. AKTÜRK, E. AKTÜRK, M. TOMAK (2008). Can Sobolev inequality be written for Sharma-Mittal entropy? International Journal of Theoretical Physics, 47, no. 12, pp. 3310-3320.

P. E. ANDERSON, H. P. JENSEN, L. P. OLIVEIRA, P. SIBANI (2004). Evolution in complex systems. COMPLEXITY, 10, no. 1, pp. 49-56.

B. C. ARNOLD, N. BALAKRISHNAN, H. N. NAGARAJA (1998). Records. John Wiley and Sons, New York.

S. BARATPOUR, J. AHMADI, N. R. ARGHAMI (2007). Entropy properties of record statistics. Statistical Papers, 48, pp. 197-213.

K. N. CHANDLER (1952). The distribution and frequency of record values. Journal of the Royal Statistical Society. Series B, 14, pp. 220-228.

T. FRANK, A. DAFFERTSHOFER (2000). Exact time-dependent solutions of the Rényi Fokker-Planck equation and the Fokker-Planck equations related to the entropies proposed by Sharma and Mittal. Physica A: Statistical Mechanics and its Applications, 285, no. 3, pp. 351-366.

N. L. JOHNSON, S. KOTZ, N. BALAKRISHNAN (2002). Continuous Multivariate Distributions, Models and Applications, vol. 1. John Wiley & Sons, New York.

T. KOSZTO LOWICZ, K. D. LEWANDOWSKA (2012). First-passage time for subdiffusion: The nonadditive entropy approach versus the fractional model. Physical Review E, 86, no. 2, p. 021108.

M. MADADI, M. TATA (2014). Shannon information in k-records. Communications in Statistics-Theory and Methods, 43, no. 15, pp. 3286-3301.

S. N. MAJUMDAR, R. M. ZIFF (2008). Universal record statistics of random walks and Lévy fights. Physical review letters, 101, no. 5, p. 3286-3301.

M. MASI (2005). A step beyond Tsallis and Rényi entropies. Physics Letters A, 338, no. 3, pp. 217-224.

S. MINIMOL, P. Y. THOMAS (2013). On some properties of Makeham distribution using generalized record values and its characterizations. Brazilian Journal of Probability and Statistics, 27, no. 4, pp. 487-501.

S. MINIMOL, P. Y. THOMAS (2014). On characterization of Gompertz distribution by generalized record values. Journal of Statistical Theory and Applications, 13, pp. 38-45.

V. B. NEVZOROV (2001). Records: Mathematical Theory. Translation of Mathematical Monographs, vol. 194. American Mathematical Society, Providence, RI, USA.

F. NIELSEN, R. NOCK (2012). A closed-form expression for the Sharma-Mittal entropy of exponential families. Journal of Physics A: Mathematical and Theoretical, 45, no. 3, pp. 1-8. URL: http://stacks.iop.org/1751-8121/45/i=3/a=032003.

J. PAUL, P. Y. THOMAS (2013). On a property of generalized record values arising from exponential distribution. Indian Association for Productivity, Quality and Reliability Transactions, 38, pp. 19-27.

J. PAUL, P. Y. THOMAS (2015a). On generalized upper(k)record values from Weibull distribution. Statistica, 75, pp. 313-330.

J. PAUL, P. Y. THOMAS (2015b). Tsallis entropy properties of record values. Calcutta Statistical Association Bulletin, 67, pp. 47-60.

A. RÉNYI (1961). On measures of entropy and information. In Proceedings of Fourth Berkeley Symposium on Mathematics, Statistics and Probability 1960. University of California Press, Berkeley, pp. 547-561.

C. E. SHANNON (1948). A mathematical theory of communication. Bell System Technical Journal, 27, pp. 379-423.

B. D. SHARMA, D. P. MITTAL (1975). New nonadditive measures of entropy for discrete probability distributions. J. Math. Sci, 10, pp. 28-40.

B. D. SHARMA, D. P. MITTAL (1977). New non-additive measures of relative information. Journal of Combinatorics Information & System Sciences, 2, no. 4, pp. 122-132.

P. SIBANI, J. J. HENRIK (2009). Record statistics and dynamics. In R. A. Meyers (ed.), Encyclopaedia of Complexity and Systems Science, Springer Science+Business Media, LLC., New York, USA., pp. 7583-7591.

P. Y. THOMAS, J. PAUL (2014). On generalized lower (k) record values from the Fr echet distribution. Journal of the Japan Statistical Society, 44, no. 2, pp. 157-178.

C. TSALLIS (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, no. 1-2, pp. 479-487.

S. ZAREZADEH, M. ASADI (2010). Results on residual R enyi entropy of order statistics and record values. Information Sciences, 180, no. 21, pp. 4195-4206.

## Downloads

## Published

## How to Cite

*Statistica*,

*76*(3), 273–287. https://doi.org/10.6092/issn.1973-2201/6621

## Issue

## Section

## License

Copyright (c) 2016 Statistica

This journal is licensed under a Creative Commons Attribution 3.0 Unported License (full legal code).

Authors accept to transfer their copyrights to the journal.

See also our Open Access Policy.