Sharma-Mittal Entropy Properties on Record Values
DOI:
https://doi.org/10.6092/issn.1973-2201/6621Keywords:
Record values, Sharma-Mittal entropy, Maximum entropy principle, Characterization, Concomitants of record values, Residual Sharma-Mittal entropyAbstract
In this paper we derive Sharma-Mittal entropy of record values and analyse some of its important properties. We establish some bounds for the Sharma-Mittal entropy of record values. We generate a characterization result based on the properties of Sharma-Mittal entropy of record values for exponential distribution. We further establish some distribution free properties of Sharma-Mittal divergence information between distribution of a record value and the parent distribution. We extend the concept of Sharma-Mittal entropy to the concomitants of record values arising from a Farlie-Gumbel-Morgenstern (FGM) bivariate distribution. Also we consider residual Sharma-Mittal Entropy and used it to describe some properties of record values.References
M. ABBASNEJAD, N. R. ARGHAMI (2011). Rényi entropy properties of records. Journal of Statistical Planning and Inference, 141, pp. 2312-2320.
J. AHMADI, M. FASHANDI (2012). Characterizations of symmetric distributions based on Rényi entropy. Statistics & Probability Letters, 82, pp. 798-804.
E. AKTÜRK, G. BAGCI, R. SEVER (2007). Is Sharma-Mittal entropy really a step beyond Tsallis and Rényi entropies? arXiv preprint cond-mat/0703277.
O. Ü. AKTÜRK, E. AKTÜRK, M. TOMAK (2008). Can Sobolev inequality be written for Sharma-Mittal entropy? International Journal of Theoretical Physics, 47, no. 12, pp. 3310-3320.
P. E. ANDERSON, H. P. JENSEN, L. P. OLIVEIRA, P. SIBANI (2004). Evolution in complex systems. COMPLEXITY, 10, no. 1, pp. 49-56.
B. C. ARNOLD, N. BALAKRISHNAN, H. N. NAGARAJA (1998). Records. John Wiley and Sons, New York.
S. BARATPOUR, J. AHMADI, N. R. ARGHAMI (2007). Entropy properties of record statistics. Statistical Papers, 48, pp. 197-213.
K. N. CHANDLER (1952). The distribution and frequency of record values. Journal of the Royal Statistical Society. Series B, 14, pp. 220-228.
T. FRANK, A. DAFFERTSHOFER (2000). Exact time-dependent solutions of the Rényi Fokker-Planck equation and the Fokker-Planck equations related to the entropies proposed by Sharma and Mittal. Physica A: Statistical Mechanics and its Applications, 285, no. 3, pp. 351-366.
N. L. JOHNSON, S. KOTZ, N. BALAKRISHNAN (2002). Continuous Multivariate Distributions, Models and Applications, vol. 1. John Wiley & Sons, New York.
T. KOSZTO LOWICZ, K. D. LEWANDOWSKA (2012). First-passage time for subdiffusion: The nonadditive entropy approach versus the fractional model. Physical Review E, 86, no. 2, p. 021108.
M. MADADI, M. TATA (2014). Shannon information in k-records. Communications in Statistics-Theory and Methods, 43, no. 15, pp. 3286-3301.
S. N. MAJUMDAR, R. M. ZIFF (2008). Universal record statistics of random walks and Lévy fights. Physical review letters, 101, no. 5, p. 3286-3301.
M. MASI (2005). A step beyond Tsallis and Rényi entropies. Physics Letters A, 338, no. 3, pp. 217-224.
S. MINIMOL, P. Y. THOMAS (2013). On some properties of Makeham distribution using generalized record values and its characterizations. Brazilian Journal of Probability and Statistics, 27, no. 4, pp. 487-501.
S. MINIMOL, P. Y. THOMAS (2014). On characterization of Gompertz distribution by generalized record values. Journal of Statistical Theory and Applications, 13, pp. 38-45.
V. B. NEVZOROV (2001). Records: Mathematical Theory. Translation of Mathematical Monographs, vol. 194. American Mathematical Society, Providence, RI, USA.
F. NIELSEN, R. NOCK (2012). A closed-form expression for the Sharma-Mittal entropy of exponential families. Journal of Physics A: Mathematical and Theoretical, 45, no. 3, pp. 1-8. URL: http://stacks.iop.org/1751-8121/45/i=3/a=032003.
J. PAUL, P. Y. THOMAS (2013). On a property of generalized record values arising from exponential distribution. Indian Association for Productivity, Quality and Reliability Transactions, 38, pp. 19-27.
J. PAUL, P. Y. THOMAS (2015a). On generalized upper(k)record values from Weibull distribution. Statistica, 75, pp. 313-330.
J. PAUL, P. Y. THOMAS (2015b). Tsallis entropy properties of record values. Calcutta Statistical Association Bulletin, 67, pp. 47-60.
A. RÉNYI (1961). On measures of entropy and information. In Proceedings of Fourth Berkeley Symposium on Mathematics, Statistics and Probability 1960. University of California Press, Berkeley, pp. 547-561.
C. E. SHANNON (1948). A mathematical theory of communication. Bell System Technical Journal, 27, pp. 379-423.
B. D. SHARMA, D. P. MITTAL (1975). New nonadditive measures of entropy for discrete probability distributions. J. Math. Sci, 10, pp. 28-40.
B. D. SHARMA, D. P. MITTAL (1977). New non-additive measures of relative information. Journal of Combinatorics Information & System Sciences, 2, no. 4, pp. 122-132.
P. SIBANI, J. J. HENRIK (2009). Record statistics and dynamics. In R. A. Meyers (ed.), Encyclopaedia of Complexity and Systems Science, Springer Science+Business Media, LLC., New York, USA., pp. 7583-7591.
P. Y. THOMAS, J. PAUL (2014). On generalized lower (k) record values from the Fr echet distribution. Journal of the Japan Statistical Society, 44, no. 2, pp. 157-178.
C. TSALLIS (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, no. 1-2, pp. 479-487.
S. ZAREZADEH, M. ASADI (2010). Results on residual R enyi entropy of order statistics and record values. Information Sciences, 180, no. 21, pp. 4195-4206.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Statistica
Copyrights and publishing rights of all the texts on this journal belong to the respective authors without restrictions.
This journal is licensed under a Creative Commons Attribution 4.0 International License (full legal code).
See also our Open Access Policy.