Estimation and Testing procedures for the Reliability functions of Exponentiated distributions under censorings

Ajit Chaturvedi, Shantanu Vyas

Abstract


Exponentiated distributions are considered. Two measures of reliability are considered, R(t)=P(X>t) and P=P(X>Y). Point estimation and testing procedures are developed for different parametric functions under Type II and Type I censoring. Uniformly minimum variance unbiased estimators (UMVUES) and maximum likelihood estimators (MLES) are derived. A new technique of obtaining these estimators is introduced.

Keywords


Exponentiated distributions; Point estimation; Testing procedures; Type I and Type II censoring

Full Text:

PDF (English)

References


A. H. ABDEL-HAMID, E. K. AL-HUSSAINI (2009). Estimation in step-stress accelerated life tests for the exponentiated exponential distribution with type I censoring. Comput. Stat. Data Anal., 53, pp. 1328–1338.

I. B. ABDUL-MONIEM, H. F. ABDEL-HAMEED (2012). On exponentiated lomax distribution. International Journal of Mathematical Archive., 3, no. 5, pp. 2144–2150.

E. K. AL-HUSSAINI (2010). On exponentiated class of distributions. J. Statist. Theory Appl., 8, pp. 41–63.

E. K. AL-HUSSAINI, M. HUSSEIN (2011). Bayes prediction of future observables from exponentiated populations with fixed and random sample size. Open Journal of Statistics, 1, pp. 24–32.

A. M. AWAD, M. K. GHARRAF (1986). Estimation of P(Y < X) in the burr case: A comparative study. Commun. Statist. B-Simul. Comp., 15, no. 2, pp. 389–403.

D. J. BARTHOLOMEW (1957). A problem in life testing. J Am Stat Assoc, 52, no. 2, pp. 350–355.

D. J. BARTHOLOMEW (1963). The sampling distribution of an estimate arising in life testing. Technometrics, 5, pp. 361–374.

A. P. BASU (1964). Estimates of reliability for some distributions useful in life testing. Technometrics, 6, pp. 215–219.

A. CHAO (1982). On comparing estimators of Pr(X > Y ) in the exponential case. ieee trans. reliab. Technometrics, R, no. 26, pp. 389–392.

A. CHATURVEDI, U. RANI (1997). Estimation procedures for a family of density functions representing various life-testing models. Metrika, 46, pp. 213–219.

A. CHATURVEDI, U. RANI (1998). Classical and bayesian reliability estimation of the generalized maxwell failure distribution. Jour. Statist. Res., 32, pp. 113–120.

A. CHATURVEDI, K. G. SINGH (2006). Bayesian estimation procedures for a family of lifetime distributions under squared-error and entropy losses. Metron, 64, no. 2, pp. 179–198.

A. CHATURVEDI, K. G. SINGH (2008). A family of lifetime distributions and related estimation and testing procedures for the reliability function. Jour. Appl. Statist. Sci., 16, no. 2, pp. 35–40.

A. CHATURVEDI, K. SURINDER (1999). Further remarks on estimating the reliability function of exponential distribution under type I and type II censorings. Brazilian Jour. Prob. Statist., 13, no. 2, pp. 29–39.

A. CHATURVEDI, N. TIWARI, S. K. TOMER (2002). Robustness of the sequential testing procedures for the generalized life distributions. Brazilian Jour. Prob. Statist., 16, pp. 7–24.

A. CHATURVEDI, S. K. TOMER (2002). Classical and bayesian reliability estimation of the negative binomial distribution. Jour. Applied Statist Sci., 11, pp. 33–43.

A. CHATURVEDI, S. K. TOMER (2003). UMVU estimation of the reliability function of the generalized life distributions. Statist. Papers, 44, no. 3, pp. 301–313.

K. CONSTANTINE, M. KARSON, S. K. TSE (1986). Estimators of P(Y < X) in the gamma case. Commun. Statist. -Simul. Comp., 15, pp. 365–388.

R. GUPTA, D. KUNDU (1999). Generalized exponential distributions. Austral. NZ J. Statist., 41, pp. 173–188.

R. GUPTA, D. KUNDU (2001a). Generalized exponential distribution: different methods of estimation. J. Statist. Comput. Simul., 69, pp. 315–337.

R. GUPTA, D. KUNDU (2001b). Exponentiated exponential family: an alternative to gamma and weibull distributions. Biometrical J., 43, pp. 117–130.

R. GUPTA, D. KUNDU (2002). Generalized exponential distributionand statistical inferences. Journal of Statistical Theory and Applications, 1, no. 1, pp. 101–118.

R. GUPTA, D. KUNDU (2003a). Discriminating between the weibull and the ge distributions. Comput. Stat. Data Anal., 43, pp. 179–196.

R. GUPTA, D. KUNDU (2003b). Closeness of gamma and generalized exponential distribution. Commun. Stat., Theory Methods, 32, pp. 705–721.

R. GUPTA, D. KUNDU, A. MANGLICK (2002). Probability of correct selection of gamma versus ge or weibull versus ge models based on likelihood ratio test. Recent Advances in Statistical Methods, London, 32, pp. 147–156.

R. C. GUPTA, R. D. GUPTA, P. L. GUPTA (1998). Modeling failure time data by lehman alternatives. Commun. Statist.-Theory and Methods, 27, pp. 887–904.

R. JIANG, D. N. P. MURTHY (1999). The exponentiated weibull family: A graphical approach. IEEE Trans. Reliability, 48, pp. 68–72.

N. JOHNSON (1975). Letter to the editor. Technometrics, 17, p. 393.

G. D. Kelley, J. A. Kelley, W. Schucany (1976). Efficient estimation of P(Y < X) in the exponential case. Technometrics, 18, pp. 359–360.

D. KUNDU, R. GUPTA (2005). Estimation of P(Y < X) for generalized exponential distribution. Metrika, 61, no. 3, pp. 291–308.

D. KUNDU, R. D. GUPTA, A. MANGLICK (2005). Discriminating between the log-normal and generalized exponential distribution. J. Stat. Plan. Inference, 127, pp. 213–227.

D. KUNDU, M. Z. RAQAB (2005). Generalized rayleigh distribution: different methods of estimation. Computational Statistics and Data Analysis, 49, pp. 187–200.

C. LAI, M. XIE, D. MURTHY (2003). Modified weibull model. IEEE Trans Reliab, 52, pp. 33–37.

M. LJUBO (1965). Curves and concentration indices for certain generalized pareto distributions. Stat Rev, 15, pp. 257–260.

G. S. MUDHOLKAR, A. D. HUTSON (1996). The exponentiated weibull family: Some properties and a flood data application. Commun. Statist.-Theory and Methods, 25, no. 12, pp. 3059–3083.

G. S. MUDHOLKAR, D. K. SRIVASTAVA (1993). Exponentiated weibull family for analyzing bathtub failure-real data. IEEE Transaction Reliability, 42, pp. 299–302.

G. S. MUDHOLKAR, D. K. SRIVASTAVA,M. FREIMER (1995). The exponentiated weibull family: a reanalysis of the bus-motor-failure data. Technometrics, 37, pp. 436–445.

M. M. NASSAR, F. H. EISSA (2003). On the exponentiated weibull distributions. Commun. Statist.-Theory and Methods, 32, pp. 1317–1333.

M. M. NASSAR, F. H. EISSA (2004)). Bayesian estimation for the exponentiated weibull model. Commun. Statist.-Theory and Methods, 33, pp. 2343–2362.

M. PAL, M. M. ALI, J. WOO (2006). Exponentiated weibull distribution statistica. Commun. Statist.-Theory and Methods, 66, no. 2, pp. 139–147.

M. PAL, M. M. ALI, J. WOO (2007). Some exponentiated distributions. The Korean Communications in Statistics, 14, pp. 93–109.

E. PUGH (1963). The best estimate of reliability in the exponential case. Operations Research, 11, pp. 57–61.

M. Z. RAQAB (2002). Inferences for generalized exponential distribution based on record statistics. J. Stat. Plan. Inference, 104, pp. 339–350.

M. Z. RAQAB, M. AHSANULLAH (2001). Estimation of the location and scale parameters of generalized exponential distribution based on order statistics. J. Stat. Comput. Simul., 69, pp. 109–124.

V. ROHTAGI, A. SALEH (2012). An introduction to probability and statistics. 2nd edn. Wiley, New York.

Y. S. SATHE, S. P. SHAH (1981). On estimation P(Y < X) for the exponential distribution. Commun. Statist. -Theor. Meth., 10, pp. 39–47.

A. I. SHAWKY, H. H. ABU-ZINADAH (2009). Exponentiated pareto distribution:different method of estimations. Int. J. Contemp. Math. Sciences, 14, pp. 677–693.

P. TADIKAMALLA (1980). A look at the burr and related distributions. Int Stat Rev, 48, pp. 337–344.

H. TONG (1974). A note on the estimation of P(Y < X) in the exponential case. Technometrics, 16, p. 625.

H. TONG (1975). Letter to the editor. Technometrics, 17, p. 393.

R. K. TYAGI, S. K. BHATTACHARYA (1989a). A note on the mvu estimation of reliability for the maxwell failure distribution. Estadistica, 41, pp. 73–79.

R. K. TYAGI, S. K. BHATTACHARYA (1989b). Bayes estimator of the maxwell’s velocity distribution function. Statistica, 49, pp. 563–567.

M. XIE, Y. TANG, T. GOH (2002). A modified weibull extension with bathtub shape failure rate function. Reliability Engineering and System safety, 76, pp. 279–285.




DOI: 10.6092/issn.1973-2201/6347