An adaptation of COBWEB for symbolic data case
DOI:
https://doi.org/10.6092/issn.1973-2201/6097Keywords:
symbolic data analysis, COBWEB, conceptual clusteringAbstract
The paper proposes an extension for well-known COBWEB algorithm for different symbolic variable types. This extension allows to apply symbolic variables for category utility evaluation. Main body of the paper presents how to adapt category utility for different symbolic variable types. Example shows an illustrative example of the proposed method.References
H. H. BOCK, E. DIDAY (Eds) (2000). Analysis of symbolic data, explanatory methods for extracting statistical information from complex data. Springer-Verlag, Berlin-Heidelberg.
L. BILLARD, E. DIDAY (2006). Symbolic data analysis: Conceptual statistics and data mining. Wiley, Chichester.
E. DIDAY (1988). The symbolic approach in clustering and related methods of data analysis. In H. H. Bock (ed.), Classification and Related Methods of Data Analysis. North Holland, Amsterdam, pp. 673–684.
E. DIDAY (1989). Introduction á l'approche symbolique en analyse des donnés. RAIRO, Recherche Opérationnelle, 23(2), pp. 193–236.
E. DIDAY, M. NOIRHOMME-FRAITURE (Eds.) (2008). Symbolic data analysis and the SODAS software. Wiley, Chichester.
D. FISHER (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, vol. 2, pp. 139–172.
D. FISHER (1987). Knowledge acquisition via incremental conceptual clustering. Technical Report no. 87-22, University of California, Irvine.
J. H. GENNARI, P. LANGLEY, D. FISHER (1989). Models of incremental concept formation. Artificial Intelligence, vol. 40, issue 1-3, pp. 11–61.
A. D. GORDON (1999). Classification. Chapman and Hall/CRC, Boca Raton.
A. K. JAIN, M. N. MURTY, P. J. FLYNN (1999). Data clustering: A review.
ACM Computational Surveys 31 (3), pp. 264–323.
K. MCKUSICK, K. THOMPSON (1990). COBWEB/3: a portable implementation. Technical Report FIA–90–6–18–2, NASA Ames Research Center, Moffett Field.
M. NOIRHOMME-FRAITURE, P. BRITO (2011). Far beyond the classical data models: symbolic data analysis. Statistical Analysis and Data Mining, vol. 4, issue 2, pp. 157–170.
M. PEŁKA (2010). Symbolic multidimensional scaling versus noisy variables and outliers. In H. Locarek-Junge, C. Weihs (Eds.) Classification as a tool for research. Springer-Verlag, Berlin-Heidelberg, 341–350.
W. M. RAND (1971). Objective criteria for the evaluation of clustering methods. Journal of American Statistical Associations, vol. 66, no. 336, pp. 846–850.
Y. XIA, B. XI (2007). Conceptual clustering categorical data with uncertainty. Proceedings of the 19-th IEEE International Conference on Tools with Artificial Intelligence, vol. 1, Los Alamitos, California, pp. 329–336.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Statistica
This journal is licensed under a Creative Commons Attribution 3.0 Unported License (full legal code).
Authors accept to transfer their copyrights to the journal.
See also our Open Access Policy.