Some results on non-central beta distributions

Authors

  • Andrea Ongaro Università degli Studi di Milano-Bicocca
  • Carlo Orsi Università degli Studi di Milano-Bicocca

DOI:

https://doi.org/10.6092/issn.1973-2201/5825

Keywords:

beta distribution, non-centrality, moments, mixture representations, hypergeometric functions

Abstract

In this paper a new non-central beta distribution is defined. Several properties are derived (including various representations and moments expressions) both for the new and the standard non-central beta distribution, showing a greater tractability and interpretability of the former.

References

F. Y. ETTOUMI, A. MEFTI, A. ADANE, M. Y. BOUROUBI (2002). Statistical analysis of solar measurements in Algeria using beta distributions. Reneweable Energy, 26, no. 1, pp. 47–67.

J. D. HASKETT, Y. A. PACHEPSKY, B. ACOCK (1995). Use of the beta distribution for parameterizing variability of soil properties at the regional level for crop yield estimation. Agricultural Systems, 48, no. 1, pp. 73–86.

N. L. JOHNSON, S. KOTZ, N. BALAKRISHNAN (1994). Continuous Univariate Distributions Vol. 1, 2nd edition. John Wiley & Sons, New York.

N. L. JOHNSON, S. KOTZ, N. BALAKRISHNAN (1995). Continuous Univariate Distributions Vol. 2, 2nd edition. John Wiley & Sons, New York.

A. M. LAW, W. D. KELTON (2000). Simulation Modeling and Analysis, 3rd edition. McGraw-Hill, Boston.

E. L. LEHMANN, J. P. ROMANO (2005). Testing Statistical Hypotheses, 3rd edition. Springer, New York.

D. G. MALCOLM, J. H. ROSEBOOM, C. E. CLARK, W. FAZAR (1959). Application of a technique for research and development program evaluation. Operations Research, 7, no. 5, pp. 646–669.

J. B. MCDONALD, Y. J. XU (1995). A generalization of the beta distribution with applications. Journal of Econometrics, 66, no. 1-2, pp. 133–152.

H. M. SRIVASTAVA, W. KARLSSON (1985). Multiple Gaussian Hypergeometric Series. Ellis Horwood, Chichester.

J. A. WILEY, S. J. HERSCHKORN, N. S. PADIAN (1989). Heterogeneity in the probability of HIV transmission per sexual contact: the case of male-to-female transmission in penile-vaginal intercourse. Statistics in Medicine, 8, no. 1, pp. 93–102.

Downloads

Published

2015-03-31

How to Cite

Ongaro, A., & Orsi, C. (2015). Some results on non-central beta distributions. Statistica, 75(1), 85–100. https://doi.org/10.6092/issn.1973-2201/5825

Issue

Section

Articles