Shrinkage Estimators of the Reliability Characteristics of a Family of Lifetime Distributions
DOI:
https://doi.org/10.6092/issn.1973-2201/5458Keywords:
Family of lifetime distributions, shrinkage estimation, type I and type II censorings, p-valueAbstract
A family of distributions is considered, which covers many lifetime distributions as specific cases. Two measures of reliability are considered, R(t) = P(X>t) and P = P(X>Y). Shrinkage estimators are considered for the powers of parameter, R(t) and 'P' under type I and type II censorings. Simulation study is conducted to judge the performance of estimators.References
Ahsanullah, M. (1980): Linear prediction of record values for the two parameter exponential distribution. Ann. Inst. Statist. Math., 32, Part A, 363-368.
Awad, A. M. and Gharraf, M. K. (1986): Estimation of P(Y
Baklizi, A. (2003): Shrinkage estimation of the exponential reliability with censored data. Focus on Applied Statistics, p.195-204.
Baklizi, A. and Dayyeh, W. A. (2003): Shrinkage Estimation of P(Y
Bartholomew, D. J. (1957): A problem in life testing. Jour. Amer. Statist. Assoc., 52, p. 350-355.
Bartholomew, D. J. (1963): The sampling distribution of an estimate arising in life testing. Technometrics, 5, p. 361-374.
Basu, A. P. (1964): Estimates of reliability for some distributions useful in life testing. Technometrics, 6, p. 215-219.
Burr, I. W. (1942): Cumulative frequency functions. Ann. Math. Statist., 13, p.215-232.
Chao, A. (1982): On comparing estimators of Pr{X>Y} in the exponential case. IEEE Trans. Reliability, R-26, p. 389-392.
Chaturvedi, A., Chauhan, K. and Alam, M. W. (2009): Estimation of the reliability function for a family of lifetime distributions under type I and type II censorings. Journal of reliability and statistical studies, 2(2), p. 11-30.
Chaturvedi, A. and Rani, U. (1997): Estimation procedures for a family of density functions representing various life-testing models. Metrika, 46, 213-219.
Chaturvedi, A. and Rani, U. (1998): Classical and Bayesian reliability estimation of the generalized Maxwell failure distribution. Jour. Statist. Res., 32, 113-120.
Chaturvedi, A. and Surinder, K. (1999): Further remarks on estimating the reliability function of exponential distribution under type I and type II censorings. Brazilian Jour. Prob. Statist., 13, p. 29-39.
Chen, Z. (2000): A new two- parameter lifetime distribution with bathtub shape or increasing failure rate function. Statistics & Probability Letters, 49, 155-161.
Cislak, P. J. and Burr, I. W. (1968): On a general system of distributions; I. Its curve-shape characteristics; II. The sample median. Jour. Amer. Statist. Assoc., 63. p. 627-635.
Constantine, K., Karson, M. and Tse, S. K. (1986): Estimation of P(Y
Erdélyi, A. (1954): Tables of Integral Transformations, Vol. 1. McGraw-Hill.
Johnson, N. L. (1975): Letter to the editor. Technometrics, 17, p. 393.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994): Continuous Univariate Distributions-Vol. 1. John Wiley & Sons, New York.
Khan, R.U. and Zia, B. (2009): Recurrence Relations for single and Product moments of record values from Gompertz distribution and a characterization. World Applied Sciences Journal, 7(10), 1331-1334.
Kelly, G. D., Kelly, J.A. and Schucany, W. R. (1976): Efficient estimation of P(Y
Lai, C. D., Xie, M. and Murthy, D. N. P. (2003): Modified Weibull model. IEEE Trans. Reliability, 52, 33-37.
Ljubo, M. (1965): Curves and concentration indices for certain generalized Pareto distributions. Statist. Rev., 15, 257-260.
Lomax, K. S. (1954): Business failures. Another example of the analysis of failure data. Jour. Amer. Statist. Assoc., 49, 847-852.
Mahmoud, M. A. W. and Al-Nagar, H. SH. (2009): On generalized order statistics from linear exponential distribution and its characterization. Stat Papers, 50, 407-418.
Nikulin, M. and Haghighi, F. (2006): A chi-squared test for the generalized power weibull family for the head-and-neck cancer censored data, Journal of Mathematical sciences, Vol. 133(3), 1333-1341.
Pandey, M. (1983): Shrinkage estimation of the exponential scale parameter. IEEE Trans. Rel. , 2, 203-205.
Philipson, C. (1963): A note on moments of a Poisson probability distribution. Scandinavian Actuarial Journal, Vol. 1963, Issue 3-4, p. 243-244.
Pugh, E.L. (1963): The best estimate of reliability in the exponential case. Operations Research, 11, p. 57-61.
Sathe, Y. S. and Shah, S. P. (1981): On estimating P(X
Sinha, S. K. (1986): Reliability and Life Testing. Wiley Eastern Limited, New Delhi.
Tadikamalla, P. R. (1980): A look at the Burr and related distributions. Inter. Statist. Rev., 48, 337-344.
Thompson, J. (1968): Some shrinkage techniques for estimating the mean. JASA, 63, p. 113-122.
Tong, H. (1974): A note on the estimation of P(Y
Tong, H. (1975): Letter to the editor. Technometrics, 17, p. 393.
Tse, S. and Tso, G. (1996): Shrinkage estimation of reliability for exponentially distributed lifetmes. Communications in Statistics, Simulation and Computation, 25(2), p.415-430.
Tyagi, R. K. and Bhattacharya, S. K.(1989): A note on the MVU estimation of reliability for the Maxwell failure distribution. Estadistica, 41, p. 73-79.
Watson, G. N. (1952): Treatise on the theory of Bessell Functions (2nd ed.). Cambridge University Press, London.
Xie, M., Tang, Y. and Goh, T. N. (2002): A modified Weibull extension with bathtub-shaped failure rate function. Reliability Eng. Sys. Safety, 76, 279-285.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Statistica
Copyrights and publishing rights of all the texts on this journal belong to the respective authors without restrictions.
This journal is licensed under a Creative Commons Attribution 4.0 International License (full legal code).
See also our Open Access Policy.