Reliability Estimation for poisson-exponential model under Progressive type-II censoring data with binomial removal data
DOI:
https://doi.org/10.6092/issn.1973-2201/5457Abstract
In this paper, a poissoin-exponential distribution(PED) is considered as a lifetime model. Its statistical characteristics and important distributional properties are discussed by Louzada-Neto et al.[13]. The method of Maximum likelihood estimation and least square estimation of parameters involved along with reliability and failure rate functions is also studied here. In view of cost and time constraints, Progressive type-II censored data with binomial removals (PT-II CBRs) have been used. Finally, a real data example is given to show the practical applications of the paper.
References
M. V. AARSET (1987). How to identify bathtub hazard rate. IEEE Transactions and Reliability, R-36, 106–108.
K. ADAMIDIS, S. LOUKAS (1998). A lifetime distribution with decreasing failure rate. Statistics and Probability Letters, 39(1), 35–42.
N. BALAKRISHNAN, R. A. SANDHU (1995). A simple simulational algorithm for generating progressive Type-II censored samples.American Statistics, 49(2), 229–230.
N. BALAKRISHNAN AND R. AGGARWALA (2000). Progressive Censoring: Theory, Methods, and Applications. Birkhauser, Boston.
N. BALAKRISHNAN, E. CRAMER, U. KAMPS (2001). Bounds for means and variances of progressive Type-II censored order statistics. Statistics and Probability Letters, 54, 301–315.
N. BALAKRISHNAN, N. KANNAN (2001). Point and Interval Estimation for Parameters of the Logistic Distribution Based on Progressively Type-II Censored Samples. In N. Balakrishnan, C. R. Rao Handbook of Statistics , 20, Eds. Amsterdam, North-Holand.
N. BALAKRISHNAN (2007). Progressive censoring methodology: an appraisal (with Discussions). Test, 16, 211–296.
W. BARRETO-SOUZA, F. A. CRIBARI-NETO (2009). Generalization of the exponentialpoisson distribution. Statistics and Probability Letters, 79, 2493–2500.
A. BASU, L. KLEIN (1982). Some Recent Development in Competing Risks Theory. Survival Analysis, IMS, Hayward, 1.
A. C. COHEN (1963). Progressively censored samples in life testing.. Technometrics, 327–339.
A. CHILDS, N. BALAKRISHNAN (2000). Conditional inference procedures for the laplace distribution when the observed samples are progressively censored. Metrika, 52, 253–265.
E. CRAMER, G. ILIOPOULOS (2010). Adaptive progressive Type-II censoring. Test, 19, 342–358.
V. G. CANCHO, F. LOUZADA-NETO, G. D. C. BARRIGA (2011). The poissonexponential lifetime distribution. Computational Statistics and Data Analysis, 55, 677–686.
R. D. GUPTA, D. KUNDU (1999). Generalized exponential distribution. Australian and New Zealand Journal of Statistics, 41(2), 173-188.
M. K. JAIN, S. R. K. IYENGAR, R. K. JAIN (1984). Numerical Methods for Scientific and Engineering Computation. New Age International (P) Limited, New Delhi, fifth edition.
J. W. PEPI (1994). Failsafe design of an all BK-7 glass aircraft window.. SPIE Proc, 2286, 431–443.
U. KAMPS, E. CRAMER (2001). On distributions of generalized order statistics. Statistics, 35, 269–280.
K. KRISHNA, K. KUMAR (2012). Reliability estimation in generalized inverted exponential distribution with progressively type II censored sample.Journal Statistical Computation and Simulation, 1, 1–13.
C. KUS (2007). A new lifetime distributions. Computational Statistics and Data analysis, 11, 4497–4509.
J. F. LAWLESS (1982). Statistical Models and Methods for Lifetime Data. Wiley, NewYork.
J. LIEBLEIN, M. ZELEN (1956). Statistical investigation of the fatigue life of deep groove ball bearings. J. Res. Nat. Bur. Stand., 57, 273–316.
F. LOUZADA-NETO (1999a). Modelling life time data: A graphical approch. Appl. Stochastic. Models Bus. Ind., 15, 123–129.
F. LOUZADA-NETO (1999b). Poly-hazard regression models for lifetime data. Biometrics, 55, 1121–1125.
F. LOUZADA-NETO, V. G. CANCHO, G D. C. BARRIGA (2011). The Poissonexponential distribution: a Bayesian approach. Journal of Applied Statistics, 38(6), 1239–1248.
M. MOUSA, Z. JAHEEN ((2002)). Statistical inference for the Burr model based on progressively censored data. An International Computers and Mathematics with Applications, 43, 1441–1449.
H. K. T. NG, P. S. CHAN, N. BALAKRISHNAN (2002). Estimation of parameters from progressively censored data using an algorithm. Computational Statistics and Data Analysis, 39, 371–386.
M. M. RISTIC, S. NADARAJAH (2010). A new lifetime distribution. Research Report No. 21. Probability and Statistics Group School of Mathematics, University of Manchester, Manchester.
G. SHANKER RAO (2006). Numerical Analysis. New Age International (P) Ltd.
J. SWAIN, S. VENKATRAMAN, J. WILSON (1988). Least squares estimation of distribution function in Johnson’s translation system. J. Statist. Comput. Simul., 29(4), 271–297.
S. K. SINGH, U. SINGH, M. KUMAR (2013). Estimation of parameters of generalized Inverted exponential distribution for progressive Type-II Censored Sample with Binomial Removals.Journal of Probability and Statistics, 1–12.
S. K. SINGH, U. SINGH, M. KUMAR (2014). Estimation for the Parameter of Poisson-Exponential distribution under Bayesian Paradigm. Journal of Data Science, 12, 157–173.
S. K. SINGH, U. SINGH, M. KUMAR (2014). Bayesian estimation for Poissonexponential model under Progressive type-II censoring data with binomial removal and its application to ovarian cancer data. Communications in Statistics – Simulation and Computation, DOI:10.1080/03610918.2014.948189, accepted.
V. L. D. TOMAZELLA, V. G. CANCHO, F. LOUZADA (2013). The bayesian reference analysis for the poisson-exponential lifetime distribution. Chilean Journal of Statistics, 4(1), 99–113.
S. K. TSE, C. YANG, H. K. YUEN (2000). Statistical analysis of Weibull distributed life time data under type II progressive censoring with binomial removals. Jounal of Applied Statistics, 27, 1033–1043.
S. J. WU, C. T. CHANG (2002). Parameter estimations based on exponential progressive type II censored with binomial removals. International Journal of Information and Management Sciences, 13, 37–46.
S. J. WU, C. T. CHANG (2003). Inference in the Pareto distribution based on progressive Type II censoring with random removals. Journal of Applied Statistics, 30(2), 163–172.
H. K. YUEN, S. K. TSE (1996). Parameters estimation for Weibull distributed lifetimes under progressive censoring with random removeals. Journal Statistical Computation and Simulation, 55 (1-2), 57–71.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Statistica
This journal is licensed under a Creative Commons Attribution 3.0 Unported License (full legal code).
Authors accept to transfer their copyrights to the journal.
See also our Open Access Policy.