Estimation of finite population variance using auxiliary information in sample surveys
DOI:
https://doi.org/10.6092/issn.1973-2201/4600Keywords:
Study variable, Auxiliary variable, Arithmetic mean, Geometric mean, Harmonic mean, Bias, Mean squared errorAbstract
This paper addresses the problem of estimating the finite population variance using auxiliary information in sample surveys. Motivated by (Singh and Vishwakarma, 2009) some estimators of finite population variance have been suggested along with their properties in simple random sampling. The theoretical conditions under which the proposed estimators are more efficient than usual unbiased, usual ratio and (Singh et al., 2009) estimators have been obtained. Numerical illustrations are given in support of the present study.References
S. BAHL, R. K, TUTEJA (1991). Ratio and product type exponential estimators. Journal of Information and Optimization Sciences, 12(1): 159-164.
R. S. BIRADAR, H. P. SINGH (1998). Predictive estimation of finite population variance. Calcutta Statistical Association Bulletin, 48: 229-235.
A. A. Cebrian, M. R. Garcia (1997). Variance estimation using auxiliary information-an almost unbiased multivariate ratio estimator. Metrika, 45: 171-178.
A. K. DAS, T. P. TRIPATHI (1978). Use of auxiliary information in estimating the finite population variance. Sankhya, C 40: 139-148.
L. K. GROVER (2007). A wide and efficient class of estimators of population variance under sub-sampling scheme. Model Assisted Statistics and Applications, 2(1): 41-51.
C. T. ISAKI (1983). Variance estimation using auxiliary information. Journal of the American Statistical Association, 78(381): 117-123.
C. KADILAR, H. CINGI (2007). Improvement in Variance Estimation in Simple Random Sampling. Communications in Statistics-Theory and Methods, 36(11): 2075-2081.
M. N. MURTHY (1967). Sampling: Theory and Methods. Statistical Publishing Society, Calcutta, India.
J. SHABBIR, S. GUPTA (2007). On improvement in variance estimation using auxiliary information. Communications in Statistics- Theory and Methods, 36(12): 2177-2185.
H. P. SINGH, R. S. SOLANKI (2009-2010). Estimation of finite population variance using auxiliary information in presence of random non-response. Gujarat Statistical Review, 36 & 37(1-2): 46-58.
H. P. SINGH, R. S. SOLANKI (2013a). A new procedure for variance estimation in simple random sampling using auxiliary information. Statistical Papers, 54(2): 479-497.
H. P. SINGH, R. S. SOLANKI. (2013b). Improved estimation of finite population variance using auxiliary information. Communications in Statistics-Theory & Methods, 42(15): 2718-2730.
H. P. SINGH, G. K. VISHWAKARMA (2008). Some families of estimators of variance of stratified random sample mean using auxiliary information. Journal of Statistical Theory and Practice, 2(1): 21-43.
H. P. SINGH, G. K. VISHWAKARMA. (2009). Some estimators of finite population mean using auxiliary information in sample surveys. Journal of Applied Statistical Science, 16(4): 397-409.
H. P. SINGH, P. CHANDRA, S. SINGH (2003). Variance estimation using multiauxiliary information for random non-response in survey sampling. Statistica, 63(1): 23-40.
H. P. SINGH, L. N. UPADHYAYA, U.D. NAMJOSHI (1988). Estimation of finite population variance. Current Science, 57(24): 1331-1334.
R. SINGH, P. CHAUHAN, N. SAWAN, F. SMARANDACHE (2009). Improved exponential estimator for population variance using two auxiliary variables. Octogon Mathematical Magazine, 17(2): 667-674.
R. S. SOLANKI, H. P. SINGH (2013). An improved class of estimators for the population variance. Model Assisted Statistics and Applications, (in press).
S. K. SRIVASTAVA, H. S. JHAJJ (1980). A class of estimators using auxiliary information for estimating finite population variance. Sankhya, C 42: 87-96.
P. V. SUKHATME, B. V. SUKHATME (1970). Sampling Theory of Surveys with Applications. Iowa State University Press, Ames, Iowa.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Statistica
This work is licensed under a Creative Commons Attribution 3.0 Unported License.