On a Test of Hypothesis to Verify the Operating Risk Due to Accountancy Errors


  • Paola Maddalena Chiodini Università degli Studi di Milano-Bicocca
  • Silvia Facchinetti Università Cattolica del Sacro Cuore, Milano




auditing, error risk, non-randomized test, operative curve


According to the Statement on Auditing Standards (SAS) No. 39 (AU 350.01), audit sampling is defined as “the application of an audit procedure to less than 100 % of the items within an account balance or class of transactions for the purpose of evaluating some characteristic of the balance or class”. The audit system develops in different steps: some are not susceptible to sampling procedures, while others may be held using sampling techniques. The auditor may also be interested in two types of accounting error: the number of incorrect records in the sample that overcome a given threshold (natural error rate), which may be indicative of possible fraud, and the mean amount of monetary errors found in incorrect records. The aim of this study is to monitor jointly both types of errors through an appropriate system of hypotheses, with particular attention to the second type error that indicates the risk of non-reporting errors overcoming the upper precision limits.


A.A. ARENS, J.K. LOEBBECKE (2002). Applications of Statistical Sampling in Auditing. Englewood Cliffs, Prentice Hall.

A.H. ASHTON, R.H. ASHTON (1988). Sequential Belief Revision in Auditing. The Accounting Review, Vol. LXIII, 4, 623-641.

AU Section 350. Audit Sampling. AICPA. http://www.aicpa.org/Research/Standards/AuditAttest/DownloadableDocuments/AU-00350.pdf. Retrieved 1 December 2012.

R.J. BOLTON, D.J. HAND (2002). Statistical Fraud Detection: A Review. Statistical Science, Vol. 17, 3, 235-255.

L.D. BROWN, M.S. ROZEFF (1979). Univariate Time-Series Models of Quarterly Accounting Earnings per Share: A Proposed Model. Journal of Accounting Research, Vol. 1, 17, 179-189.

G. CAPRARA (1988). Stato e prospettive dell’impiego della statistica e dell’informatica nella moderna gestione aziendale: il problema della formazione professionale. Statistica, Vol. XLVIII, 649-665.

P.M. CHIODINI, U. MAGAGNOLI (2004). L’impiego dei metodi statistici nel controllo dinamico della gestione aziendale. Relation presented to the Conference MTISD “Metodi, Modelli e Tecnologie dell’Informazione a Supporto delle Decisioni”, Università del Sannio, Benevento, 24-26 June 2004, 1-4.

R. CLEARY, J.C. THIBODEAU (2005). Applying Digital Analysis Using Benford’s law to detect Fraud: The Dangers of Type I Errors. Auditing: A Journal of Practice & Theory, Vol. 24, May, 77-81.

D.M. GUY, D.R. CARMICHAEL, R. WHITTINGTON, (2002). Audit Sampling: an introduction. John Wiley & Sons, New York.

R.W. HOUSTON, M.F. PETERS, J.H. PRATT (1999). The Audit Risk Model, Business Risk and Audit-Planning Decisions. The Accounting Review, Vol. 74, 3, 281-298.

G.K. KANJI (2004). Total Quality Management and Statistical Understanding. Total Quality Management, 5, 105-114.

J. KRIENS, R.H. VEENSTRA (1985). Statistical Sampling in Internal Control by Using the AOQL-System. The Statistician, 34, 383-390.

R. LIBBY, J.T. ARTMAN, J.J. WILLINGHAM (1985). Process Susceptibility, Control Risk, and Audit-Planning. The Accounting Review, Vol. 60, 4, 212-230.

K.-Y. Low (2004). The effects of Industry Specialization on Audit Risk Assessment and Audit-Planning Decisions. The Accounting Review, Vol. 79, 1, 201-219.

D.C. MONTGOMERY (2005). Introduction to Statistical Quality Control, 5th Edition. John Wiley & Sons, New York. T.M.F. SMITH (1976). Statistical Sampling for Accountants. Haymarket, London.

A.D. TEITLEBAUM, C.F. ROBINSON (1975). The Real Risks in Audit Sampling. Journal of Accounting Research, 13, Studies on Statistical Methodology in Auditing, 70-91.




How to Cite

Chiodini, P. M., & Facchinetti, S. (2014). On a Test of Hypothesis to Verify the Operating Risk Due to Accountancy Errors. Statistica, 74(1), 45–64. https://doi.org/10.6092/issn.1973-2201/4597