An improved estimation of parameters of Morgenstern type bivariate logistic distribution using ranked set sampling
DOI:
https://doi.org/10.6092/issn.1973-2201/4499Keywords:
best linear unbiased estimator, concomitants of order statistics, minimum mean squared error estimator, Morgenstern type bivariate logistic distribution, ranked set samplingAbstract
In this paper we have suggested some improved estimator of parameters of Morgenstern type bivariate logistic distribution (MTBLD) using ranked set sampling. We have shown the superiority of the proposed estimators over Chacko and Thomas (2009) estimators.References
A. B. SHAIBU, H. A. MUTTLAK (2004). Estimating the parameters of normal, exponential and gamma distributions using median and extreme ranked set samples. Statistica, 64, pp. 75-98.
D. T. SEARLS (1964). The utilization of a know coefficient of variation in the estimation procedure. Journal of the American Statistical Association, 59, pp. 1225-1226.
D. T. SEARLS, P. INTARAPANICH (1990). A note on the estimator for the variance that utilizes the kurtosis. The American Statistician, 44, pp. 295-296.
G. A. MCINTYRE (1952). A method for unbiased selective sampling, using ranked sets. Australian Journal of Agricultural Research, 3, pp. 385–390.
J. SCARIA, N. U. NAIR (1999). On concomitants of order statistics from Morgenstern family. Biometrical Journal, 41, pp. 483–489.
J. SINGH, B. N. PANDEY, K. HIRANO, (1973). On the utilization of known coefficient of kurtosis in the estimation procedure of variance. Annals of the Institute of Statistical Mathematics, 25, pp. 51-55.
K. HIRANO (1972). Using some approximately known coefficient of variation in estimating the mean. Research Memorandum, 49, Institute of Statistical Mathematics, Tokyo, Japan.
M. AL-RAWWASH, M. T. ALODAT, K. M. ALUDAAT, N. ODAT, R. MUHAIDAT (2010). Prediction intervals for characteristics of future normal sample under moving ranked set sampling. Statistica, 70, pp.137-152.
M. CHACKO, P. Y. THOMAS (2006). Concomitants of record values arising from Morgenstern type bivariate logistic distribution and some of their applications in parameter estimation. Metrika, 64, pp. 317-331.
M. CHACKO, P. Y. THOMAS (2007). Estimation of a parameter of bivaraite Pareto distribution by ranked set sampling. Journal of Applied Statistics, 34, pp. 703-714.
M. CHACKO, P. Y. THOMAS (2008). Estimation of parameter of Morgenstern type bivariate exponential distribution by ranked set sampling. Annals of the Institute of Statistical Mathematics, 60, pp. 301-318.
M. CHACKO, P. Y. THOMAS (2009). Estimation of parameters of Morgenstern type bivariate Logistic distribution by ranked set sampling. Journal of the Indian Society of Agricultural Statistics, 63, pp. 77-83.
S. KOTZ, N. BALAKRISHNAN, N. L. JOHNSON (2000). Distributions in statistics: continuous multivariate distributions. Wiley, New York.
S. L. STOKES (1977). Ranked set sampling with concomitant variables. Communications in Statistics-Theory and Methods, 6, pp. 1207–1211.
S. S. HOSSAIN, A. KHAN (2006). Test procedures with selected ranked set sampling, Statistica, 66, pp. 161-170.
S. S. HOSSAIN, H. A. MUTTLAK (2006). Hypothesis tests on the scale parameter using median ranked set sampling. Statistica, 66, pp. 415-433.
V. BARNETT, K. MOORE (1997). Best linear unbiased estimates in ranked-set sampling with particular reference to imperfect ordering. Journal of Applied Statistics, 24, pp. 697–710.
V. K. SRIVASTAVA (1974). On the use of coefficient of variation in estimating mean. Journal of Indian Society of Agricultural Statistics, 26, pp. 33-36.
V. K. SRIVASTAVA, T. D. DWIVEDI, S. BHATNAGAR (1980). Estimation of square of mean in normal population. Statistica, 40, pp. 455-466.
Z. CHEN, Z. BAI, B. K. SINHA (2004). Lecture notes in statistics, ranked set sampling, theory and applications. Springer, New York.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 Statistica
This work is licensed under a Creative Commons Attribution 3.0 Unported License.