Identifying modularity structure of a genetic network in gene expression profile data

Authors

  • Luigi Augugliaro Università degli Studi di Palermo
  • Angelo M. Mineo Università degli Studi di Palermo

DOI:

https://doi.org/10.6092/issn.1973-2201/4345

Keywords:

Gaussian graphical models, modularity, differentially expressed genes

Abstract

Aim of this paper is to define a new statistical framework to identify central modules in Gaussian Graphical Models (GGMs) estimated by gene expression data measured on a sample of patients with negative molecular response to Imatinib. Imatinib is a drug used to treat certain types of cancer that inmany medical studies has been reported to have a significant clinic effect on chronic myeloid leukemia (CML) in chronic phase as well as in blast crisis. For centralmodule in a GGM we intend a module containing genes that are defined differentially expressed.

References

A. L. BARABASI, Z. N. OLTVAIR (2004). Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5, no. 2, pp. 101–113.

S. CABODI, V. MORELLO, A. MASI, R. CICCHI, C. BROGGIO, P. DISTEFANO, E. BRUNELLI, L. SILENGO, F. PAVONE, A. ARCANGELI, E. TURCO, G. TARONE, L.MORO, P. DEFILIPPI (2009). Convergence of integrins and EGF receptor signaling via PI3K/Akt/FoxO pathway in early gene Egr-1 expression. Journal of Cellular Physiology, 218, no. 2, pp. 294–303.

I.COSTA, S. ROEPCKE, C.HAFEMEISTER,A. SCHLIEP (2008). Inferring differentiation pathways from gene expression. Bioinformatics, 24, no. 13, pp. i156–i164.

A. DEMPSTER (1972). Covariance selection. Biometrics, 28, pp. 157–175.

D. EDWARDS (2000). Introduction to Graphical Modelling. Springer Verlag, New York.

B. EFRON, R. TIBSHIRANI, J. STOREY, V. TUSHER (2001). Empirical Bayes Analysis of a Microarray Experiment. Journal of the American Statistical Association, 96, no. 456, pp. 1151–1160.

V. FERRETTI, C. POITRAS, D. BERGERON, B. COULOMBE, F. ROBERT, M. BLANCHETTE (2007). PReMod: a database of genome-wide mammalian cis-regulatory module predictions. Nucleic Acids Research, 35, pp. D122–D126.

L. FREEMAN (1978). Centrality in social networks: Conceptual clarification. Social Networks, 1, pp. 215–239.

N. FRIEDMAN (2004). Inferring cellular networks using probabilistic graphical models. Science, 303, pp. 799–805.

E. R. GANSNER, S. C. NORTH (2000). An open graph visualization system and its applications to software engineering. Software: Practice and Experience, 30, no. 11, pp. 1203–1233.

R. C. GENTLEMAN, V. J. CAREY, D. M. BATES, B. BOLSTAD, M. DETTLING, S. DUDOIT, B. ELLIS, L. GAUTIER, Y. GE, J. GENTRY, K. HORNIK, T. HOTHORN, W. HUBER, S. IACUS, R. IRIZARRY, F. LEISCH, C. LI, M. MAECHLER, A. J. ROSSINI, G. SAWITZKI, C. SMITH, G. SMYTH, L. TIERNEY, J. Y. YANG, J. ZHANG (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biology, 5, p. R80.

J. GIBBS, D. LIEBERMANN, B. HOFFMAN (2008). Egr-1 abrogates the E2F-1 block in terminal myeloid differentiation and suppresses leukemia. Oncogene, 27, no. 1, pp. 98–106.

I. GUYON, J. WESTON, S. BARNHILL, V. VAPNIK (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, pp. 389–422.

S. HORVATH, J. DONG (2008). Geometric Interpretation of Gene Coexpression Network Analysis. PLoS Computational Biology, 4, no. 8, p. e1000117.

O. LEDOIT, M. WOLF (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10, pp. 603–621.

K. J. LIVAK, T. D. SCHMITTGEN (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 Method. Methods, 25, no. 4, pp. 402–408.

M. NEWMAN, M. GIRVAN (2004). Finding and evaluating community structure in networks. Physical Review, E 69, p. 026113.

R DEVELOPMENT CORE TEAM (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org. ISBN 3-900051-07-0.

J. SCHÄFER, K. STRIMMER (2005a). An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, no. 6, pp. 754–764.

J. SCHÄFER, K. STRIMMER (2005b). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4, no. 1(32).

T. SCHLITT, A. BRAZMA (2007). Current approaches to gene regulatory network modelling. BMC Bioinformatics, 8 (Suppl. 6).

E. SEGAL, M. SHAPIRA, A. REGEV, D. PE’ER, D. BOTSTEIN, D. KOLLER, N. FRIEDMAN (2003). Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 34, no. 2, pp. 166–176.

O. TROYANSKAYA, M. CANTOR, G. SHERLOCK, P. BROWN, T. HASTIE, R. TIBSHIRANI, D. BOTSTEIN, R. B. ALTMAN (2001). Missing valu Bioinformatics, 17, no. 6, pp. 520–525.

V. G. TUSHER, R. TIBSHIRANI,G. CHU (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98, no. 9, pp. 5116–5121.

J. ZHU, T. HASTIE (2004). Classification of gene microarrays by penalized logistic regression. Biostatistics, 5, no. 3, pp. 427–443.

Downloads

Published

2009-09-30

How to Cite

Augugliaro, L., & Mineo, A. M. (2009). Identifying modularity structure of a genetic network in gene expression profile data. Statistica, 69(2/3), 187–200. https://doi.org/10.6092/issn.1973-2201/4345

Issue

Section

Articles