Can a regional climate model reproduce observed extreme temperatures?

Authors

  • Peter F. Craigmile University of Glasgow
  • Peter Guttorp University of Washington, Seattle

DOI:

https://doi.org/10.6092/issn.1973-2201/3988

Keywords:

Doksum shift function, generalized extreme value (GEV) distribution, hierarchical Bayesian model, seasonal minima, spatio-temporal modeling

Abstract

Using output from a regional Swedish climate model and observations from the Swedish synoptic observational network, we compare seasonal minimum temperatures from model output and observations using marginal extreme value modeling techniques. We make seasonal comparisons using generalized extreme value models and empirically estimate the shift in the distribution as a function of the regional climate model values, using the Doksum shift function. Spatial and temporal comparisons over south central Sweden are made by building hierarchical Bayesian generalized extreme value models for the observed minima and regional climate model output. Generally speaking the regional model is surprisingly well calibrated for minimum temperatures. We do detect a problem in the regional model to produce minimum temperatures close to 0◦C. The seasonal spatial effects are quite similar between data and regional model. The observations indicate relatively strong warming, especially in the northern region. This signal is present in the regional model, but is not as strong.

References

V. BERROCAL, P. CRAIGMILE, P. GUTTORP (2012). Regional climate model assessment using statistical upscaling and downscaling techniques. Environmetrics, 23, pp. 482–492.

R. BORDOY, P. BURLANDO (2013). Bias correction of regional climatemodel simulations in a region of complex orography. Journal of Applied Meteorology and Climatology, 52, pp. 82–101.

S. COLES (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag.

D. COOLEY, D. NYCHKA, P. NAVEAU (2007). Bayesian spatial modeling of extreme precipitation return levels. Journal of the American Statistical Association, 102, pp. 824–840.

P. F. CRAIGMILE, P. GUTTORP (2011). Space-time modelling of trends in temperature series. Journal of Time Series Analysis, 32, pp. 378–395.

A. C. DAVISON, S. A. PADOAN, M. RIBATET (2012). Statistical modelling of spatial extremes. Statistical Science, 27, pp. 161–186.

K. A. DOKSUM (1974). Empirical probability plots and statistical inference for nonlinear models in the two sample case. Annals of Statistics, 2, pp. 267–277.

K. A. DOKSUM, G. L. SIEVERS (1976). Plotting with confidence: Graphical comparisons of two populations. Biometrika, 63, pp. 421–434.

C. GAETAN, M. GRIGOLETTO (2007). A hierarchical model for the analysis of spatial rainfall extremes. The Journal of Agricultural, Biological and Environmental Statistics, 12, pp. 434–449.

S. GHOSH, B. K. MALLICK (2011). A hierarchical Bayesian spatio-temporal model for extreme precipitation events. Enivronmetrics, 22, pp. 192–204.

M. R. HAYLOCK, N. HOFSTRA, A. M. G. KLEIN TANK, E. J. KLOK, P. D. JONES, CO AUTHORS (2008). European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Researh, 113.

J. E. HEFFERNAN, J. A. TAWN (2004). A conditional approach for multivariate extreme values. Journal of the Royal Statistical Society, Series B, 66, pp. 497–546.

V. V. KHARINS, F.W. ZWIERS (2000). Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean GCM. Journal of Climate, 13, pp. 3760–3788.

E. KOCMÁNKOVÁ, M. TRNKA, J. EITZINGER, H. FORMAYER, M. DUBROVSKÝ, D. SEMERDOVÁ, Z. ˇ ZALUD, J. JUROCH, M. MOˇzNÝ (2010). Estimating the impact of climate change on the occurrence of selected pests in the Central European region. Climate Research, 44, pp. 95–105.

A. W. LEDFORD, J. A. TAWN (1996). Statistics for near independence in multivariate extreme values. Biometrika, 83, pp. 169–187.

Y. MA, P. GUTTORP (2013). Estimating daily mean temperature from synoptic climate observations. International Journal of Climatology, 33, pp. 1264–1269.

E. MANNSHARDT, P. F. CRAIGMILE, M. P. TINGLEY (2013). Statistical modeling of extreme value behavior in North American tree-ring density series. Climatic Change, 117, pp. 843–858.

L. MARINI, M. P. AYRES, A. BATTISTI, M. FACCOLI (2012). Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Climatic Change, 115, pp. 327–341.

G. NIKULIN, E. KJELLSTRÖM, U. HANSSON, G. STRANDBERG, A. ULLERSTIG (2011). Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A, 63, pp. 41–55.

R DEVELOPMENT CORE TEAM (2007). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org ISBN 3-900051-07-0.

M. RIBATET, D. COOLEY, A. C. DAVISON (2012). Bayesian inference from composite likelihoods, with an application to spatial extremes. Statistica Sinica, 22, pp. 813–845.

M. RUMMUKAINEN (2010). State-of-the-art with regional climate models. WIREs Climate Change, 1, pp. 82–96.

P. SAMUELSSON, C. G. JONES, U. WILLÉN, A. ULLERSTIG, S. GOLLVIK, U. HANSSON, C. JANSSON, E. KJELLSTRÖM, G. NIKULIN, K. WYSER (2011). The Rossby Centre regional climate model RCA3: model description and performance. Tellus A, 63, pp. 4–23.

H. SANG, A. E. GELFAND (2010). Continuous Spatial Process Models for Spatial Extreme Values. Journal of Agricultural, Biological and Environmental Statistics, 15, pp. 49–65.

S. SOLOMON, D. QIN, M. MANNING, et al. (eds.) (2007). Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge.

S. UPPALA, D. DEE, S. KOBAYASHI, P. BERRISFORD, A. SIMMONS (2008). Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newsletter, pp. 12–18.

S. UPPALA, P. KÖLBERG, A. SIMMONS, U. ANDRAE, V. DA COSTA BECHTOLD, M. FIORINO, J. GIBSON, J. HASELER, A. HERNANDEZ, G. KELLY, X. LI, K. ONOGI, S. SAARINEN, N. SOKKA, R. ALLAN, E. ANDERSSON, K. ARPE, M. BALMASEDA, A. BELJAARS, L. VAN DE BERG, J. BIDLOT, N. BORMANN, S. CAIRES, F. CHEVALLIER, A. DETHOF, M. DRAGOSAVAC, M. FISHER, M. FUENTES, S. HAGEMANN, E. HÓLM, B. HOSKINS, L. ISAKSEN, P. JANSSEN,

R. JENNE, A. MCNALLY, J.-F. MAHFOUF, J.-J. MORCRETTE, N. RAYNER, R. SAUNDERS, P. SIMON, A. STERL, K. TRENBERTH, A. UNTCH, D. VASILJEVIC, P. VITERBO, J. WOOLLEN (2005). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131, pp. 2961–3012.

F. W. ZWIERS, Z. ZHANG, Y. FENG (2011). Anthropogenic influence on long return period daily temperature extremes at regional scales. Journal of Climate, 24, pp. 881–892.

Downloads

Published

2013-03-31

How to Cite

Craigmile, P. F., & Guttorp, P. (2013). Can a regional climate model reproduce observed extreme temperatures?. Statistica, 73(1), 103-122. https://doi.org/10.6092/issn.1973-2201/3988

Issue

Section

Articles