Spatio-temporal modelling of zero-inflated deep-sea shrimp data by Tweedie generalized additive

Authors

  • Simona Arcuti Università degli Studi di Bari Aldo Moro
  • Crescenza Calculli Università degli Studi di Bari Aldo Moro
  • Alessio Pollice Università degli Studi di Bari
  • Gianfranco D’Onghia Università degli Studi di Bari Aldo Moro
  • Porzia Maiorano Università degli Studi di Bari Aldo Moro
  • Angelo Tursi Università degli Studi di Bari Aldo Moro

DOI:

https://doi.org/10.6092/issn.1973-2201/3987

Keywords:

generalized Additive Models, zero-inflated data, Tweedie distribution, spatio-temporal modeling, Demersal resources abundance

Abstract

In theMediterrean Sea the population features of demersal resources fluctuate over spatial and temporal scales due to the variability of abiotic and biotic factors as well as to human activities. The two shrimps Parapenaeus longirostris and Aristaeomorpha foliacea are among the most important deep-sea demersal resources in the North-Western Ionian Sea. Their changes in terms of density, biomass andmedian length induced by anthropogenic and environmental variables (fishing effort, sea surface temperature, precipitations, Winter North Atlantic Oscillation (NAO) and Annual MediterraneanOscillation (MO) indices) were investigated. Biological data were collected during trawl surveys carried out from 1995 to 2006 as part of the international program MEDITS (International Bottom Trawl Survey in the Mediterranean). Generalized AdditiveModels were used to evaluate the spatio-temporal variation of both species, together with the possible nonlinear effects of biotic and abiotic factors. Density and biomass were assumed to be distributed according to a member of the Tweedie family in order to account for zero-inflation in the relative data. Spacetime interaction was consideredwithin a non-separablemodel with smooth spatio-temporal component based on tensor product splines. The results show significant spatio-temporal and depth effects in the three population parameters of these resources. Winter NAO index significantly influenced the density, biomass and length of P. longirostris. Sea surface temperature significantly influenced the size of this species and the three population features of A. foliacea. The size of this shrimp resulted also influenced negatively by fishing effort and positively by the MO index.

References

P. ABELLÓ, A. ABELLA, A. ADAMIDOU, S. JUKIC-PELADIC, P. MAIORANO, M. T. SPEDICATO (2002). Geographical patterns in abundance and population structure of Nephrops norvegicus and Parapenaeus longirostris (Crustacea: Decapoda) along the European Mediterranean coast. Scientia Marina, 66, suppl. 2, pp. 125 – 141.

N. H. AUGUSTIN, E. D. BORCHERS, S. T. CLARKE, S. T. BUCKLAND, M. WALSH (1998). Spatiotemporal modelling for the annual egg production method of stock assessment using generalized additive models. Canadian Journal of Aquatic and Fisheries Sciences, 55, pp. 2608 – 2621.

H. BI, R. E. RUPPEL, W. T. PETERSON (2007). Modeling the pelagic habitat of salmon off the Pacific Northwest coast using logistic regression. Marine Ecology Progress Series, 336, pp. 249 – 265.

D. L. BORCHERS, S. T. BUCKLAND, I. G. PRIEDE, S. AHMADI (2009). Improving the precision of the daily egg production method using generalized additive models. Canadian Journal of Aquatic and Fisheries Sciences, 54, pp. 2727 – 2742.

S. G. CANDY (2004). Modelling catch and effort data using generalized linear models, the Tweedie distribution, random vessel effects and random stratum-by-year effects. CCAMLR Sci., 11, pp. 59 – 80.

F. CAPEZZUTO, R. CARLUCCI, P. MAIORANO, L. SION, D. BATTISTA, A. INDENNIDATE, G.D’ONGHIA, A. TURSI (2010). The bathyal benthopelagic fauna in the NW Ionian Sea: structure, patterns and interactions. Chemistry and Ecology, suppl. 26, pp. 199 – 217.

A. CAU, A. CARBONELL, M. C. FOLLESA, A.MANNINI, G. NORRITO, L. ORSI RELINI, C. Y. POLITOU, S. RAGONESE, P. RINELLI (2002). MEDITS-based information on the deep-water red shrimps Aristaeomorpha foliacea and Aristeus antennatus (Crustacea: Decapoda: Aristaeidae). Scientia Marina, 66, suppl. 2, pp. 103 – 124.

L. CIANNELLI, K. S.CHAN,N.C. STENSETH (2007). Phenological and geographical patterns of Walleye Pollock spawning in the Gulf of Alaska. Canadian Journal of Aquatic and Fisheries Sciences, 64, pp. 713 – 722.

G. CIVITARESE, M. GA˘CI´C, M. LIPIZER, G. L. EUSEBI BORZELLI (2010). On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences, 7, pp. 3987 –3997.

A.CONVERSI, S. FONDAUMANI, T. PELUSO, J.C.MOLINERO,M.EDWARDS (2010). The Mediterranean Sea regime shift at the end of the 1980s, and intriguing parallelisms with other European basins. Plos one, 5, no. 5, pp. 1 – 15.

R. B. CUNNINGHAM, D. B. LINDENMAYER (2005). Modeling count data of rare species: some statistical issues. Ecology, 85, pp. 1135 – 1142.

G.DASKALOV (1999). Relating fish recruitment to stock biomass and physical environment in the black sea using generalized additive models. Fish. Res., 41, no. 1, pp. 1 – 23.

G. D’ONGHIA, A. GIOVE, P. MAIORANO, R. CARLUCCI, M. MINERVA, F. CAPEZZUTO, L. SION, A. TURSI (2012). Exploring relationships between demersal resources and environmental factors in the Ionian Sea (CentralMediterranean). Journal ofMarine Biology, 2012. Article ID 279406, 12 pages.

G. D’ONGHIA, P. MAIORANO, A. MATARRESE, F. PERRI (1998a). Distribution, biology, and population dynamics of Aristaeomorpha foliacea (Risso, 1827) (Decapoda, Natantia, Aristeidae) in the North-Western Ionian Sea (Mediterranean Sea). Crustaceana, 71, no. 5, pp. 518 – 544.

G. D’ONGHIA, A. MATARRESE, P. MAIORANO, F. PERRI (1998b). Valutazione di Parapenaeus longirostris (Lucas, 1846) (Crustacea, Decapoda) nel Mar Ionio. Biol. Mar. Medit., 5, pp. 273 – 283.

P. K. DUNN (2004). Occurrence and quantity of precipitation can be modelled simultaneously. International Journal of Climatology, 24, pp. 1231 – 1239.

P. K. DUNN (2013). tweedie: Tweedie exponential familymodels. R package version 2.1.7.

P. K. DUNN, G. K. SMYTH (2008). Evaluation of Tweedie exponential dispersion model densities by Fourier inversion. Statistics and Computing, 18, pp. 73 – 86.

P. K. DUNN, G. K. SMYTH (2009). Series evaluation of Tweedie exponential dispersion model. Statistics and Computing, 15, pp. 267 – 280.

L. FIORENTINI, G. COSIMI, A. SALA, V. PALUMBO (1994). Caratteristiche e prestazioni delle attrezzature a strascico impiegate per la valutazione delle risorse demersali in italia. Biol. Mar. Medit., 1, suppl. 2, pp. 115 – 134.

C. J. FOX, C. M. O’BRIEN, M. DICKEY-COLLAS, R. D. M. NASH (2000). Patterns in the spawning of cod (Gadus morhua l.), sole (Solea solea l.) and plaice (Pleuronectes platessa l.) in the Irish Sea as determined by generalized additive modeling. Fisheries Oceanography, 9, pp. 33 – 49.

M. GAČIĆ , G. L. E. BORZELL, G. CIVITARESE, V. CARDIN, S. YAIRI (2010). Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophysical Research Letters, 37, no. 9, pp. 1 – 5.

W. GHIDALIA, F. BOURGOIS (1961). Influence de la temperature et de l’éclairement sur la distribution des crevettes des moyennes et grandes profondeurs. In: Stud. Rev. Gen. Fish. Couns. Medit., FAO, 16, pp. 1 – 53.

T. HASTIE, R. J. TIBSHIRANI (1990). Generalized Additive Models. Chapman and Hall, London.

B. JØRGENSEN (1997). The Theory of Dispersion Models. Chapman and Hall, London.

B. JØRGENSEN, G. K. SMYTH (2002). Fitting Tweedie’s compound Poisson model to insurance claims data: dispersion modelling. ASTIN Bulletin, 32, pp. 143–157.

A. LIGAS, S. DE RANIERI, D. MICHELI, B. REALE, P. SARTOR, M. SBRANA, P. BELCARI (2010). Analysis of the landings and trawl survey time series from the Tyrrhenian Sea (NWMediterranean). Fisheries Research, 105, suppl. 1, pp. 46 – 56.

H. LIU, K. S. CHAN (2008). Constrained generalized additive model with Zero-Inflated data. Technical Report 388, The University of Iowa, Department of Statistics and Actuarial Science.

P. MAIORANO, L. SION, R. CARLUCCI, F. CAPEZZUTO, A. GIOVE, G. COSTANTINO, M. PANZA, G. D’ONGHIA, A. TURSI (2010). The demersal faunal assemblage of the Northwestern Ionian Sea (central Mediterranean): Current knowledge and perspectives. Chemistry and Ecology, 26, Suppl. June 2010, pp. 219 –240.

E. MASSUTÍ, S. MONSERRAT, P. OLIVER, J. MORANTA, J. L. LOPEZ-JURADO, M. MARCOS, M. HIDALGO, B. GUIJARRO, A. CARBONELL, P. PEREDA (2008). The influence of oceanographic scenarios on the population dynamics of demersal resources in the western Mediterranean: Hypothesis for hake and red shrimps of Balearic Islands. Journal of Marine Systems, 71, pp. 421–438.

F. MAYNOU (2008). Environmental causes of the fluctuation of red shrimps (Aristeus antennatus)

landings in the Catalan Sea. Journal of Marine Systems, 71, pp. 294 – 302.

M.MUSIO, E.A. SAULEAU, A. BUEMI (2009). Bayesian semi-parametric ZIPmodels with space-time interactions: An application to cancer registry data. Mathematical Medicine and Biology, 27, pp. 181 – 194.

R. RUIZ CÁRDENAS, R. M. A. AO, C. DEMÉTRIO (2009). Temporal modelling of coffee berry borer infestation patterns accounting for inflation of zeroes and missing values. Scientia Agricola, 66, pp. 100 – 109.

H. SHONO (2008). Application of the Tweedie distribution to zero-catch data in CPUE analysis. Fisheries Research, 93, pp. 154 – 162.

R. TASCHERI, J. C. SAAVEDRA-NIEVAS, R. ROA-URETA (2010). Statistical models to standardize catch rates in the multi-species trawl fishery for Patagonian grenadier (Macruronus magellanicus) of Southern Chile. Fisheries Research, 105, pp. 200 – 214.

R. TOBAR, F. SARDÁ (2010). Análisis de la evolución de las capturad de gamba rosada, Aristeus antennatus (Risso, 1817) en los utimos decenios en Cataluña. Informes Técnicos del Instituto de Ciencias del Mar de Barcelona, 142, pp. 1 – 20.

N.UNGARO, R.GRAMOLINI (2006). Possible effect of bottomtemperature on distribution of Parapenaeus longirostris (Lucas, 1846) in the Southern Adriatic (Mediterranean Sea). Turkish Journal of Fisheries and Aquatic Sciences, 6, pp. 109 – 116.

S. WOOD (2006). Generalized Additive Models: An Introduction with R. Chapman and Hall CRC, Boca Raton, Florida.

F. ZUUR, E.N. IENO,N.WALKER, A.A. SAVELIEV, G.M. SMITH (2009). Mixed effects models and extensions in ecology with R. Springer, New York.

Downloads

Published

2013-03-31

How to Cite

Arcuti, S., Calculli, C., Pollice, A., D’Onghia, G., Maiorano, P., & Tursi, A. (2013). Spatio-temporal modelling of zero-inflated deep-sea shrimp data by Tweedie generalized additive. Statistica, 73(1), 87–101. https://doi.org/10.6092/issn.1973-2201/3987

Issue

Section

Articles