Statistical sources and statistical system in the information society


  • Carlo Filippucci Alma Mater Studiorum - Università di Bologna



The aim of the paper is to analyze the impact on statistical systems and on official statistics derived from the increasing availability of archives in relation to many kinds of phenomena and subjects and the growing interest in taking advantage of these records by national statistical agencies and by several institutional and private entities emerging as “new data producers”. The effects of an enormous amount of electronic information extend to many aspects so that it seems possible to speak of a “revolution in data production”.
The main issues concerning the Italian statistical system and its key objects, and the topics arising to ensure appropriate standards for data resulting from non statistical sources are investigated and discussed in the paper. In particular, the new challenges arising from the statistical use of administrative and managerial sources are identified. Finally, in the last part of the paper, focus is on the particular meaning a characterization the categories concerning measurement errors, quality, comparability and coherence take on when these sources are used to produce statistics.


AL P., BAKKER B.F.M. eds. (2000), Re-engineering Social Statistics by micro-integration of different sources. Themanummer Netherlands Official Statistics, vol. 15, pp. 16-22.

ARTS, K., BAKKER B.F.M., VAN LITH E. (2000), Linking administrative registers and household surveys, In: P. Al & B.F.M. Bakker (red.), Re-engineering Social Statistics by microintegration of different sources. Themanummer Netherlands Official Statistics, 15, pp. 16-22.

BAIGORRI, A., LINDEN, H. (2007), A Quality Assurance Framework for Eurostat, CCSA meeting,September 10-11, Madrid.

BAIGORRI A., LINDEN H. (2009), The implementation of quality assurance frameworks for international and supranational organizations compiling statistics, International Statistical Conference “Statistics: Investment in the future”, Prague, September 14-15, 492.

BAKKER B.F.M, LINDER F. VAN ROOND. (2008), Could that be true? Methodological issues when deriving educational attainment from different administrative data sources and surveys, IAOS Conference on Reshaping Official Statistics, Shanghai, China, October 12-14.

BOLFARINE H., ZACKS S. (1992), Prediction Theory for Finite Populations, Springer – Probability & Statistics, New York.

BRACKSTONE, G. (1987), Statistical Issues of Administrative Data: Issues and Challenges, Proceedings of Statistical Uses of Administrative Data - An International Symposium, Statistics Canada, Ottawa, December.

CALZARONI M. (2008), Le fonti amministrative nei processi e nei prodotti della statistica ufficiale, in IX Conferenza nazionale di statistica, Roma.

COGIS (2008), Indagine sull’attività statistica delle Regioni”, Commissione per la Garanzia dell’informazione statistica, Roma, in press.

COOMBS, J. W., SINGH M.P. eds, (1987), Statistical issues of administrative data, International Symposium, Statistics Canada, Ottawa.

DANIELSSON S. (2004), The propensity score and estimation in non-random surveys – an overview”, Report n.18 project “Modern statistical survey methods” Department of Statistics University of Linköping.

DAAS, P.J.H., ARENDS-TÓTH, J., SCHOUTEN, B., KUIJVENHOVEN, L. (2008), Quality Framework for the Evaluation of Administrative Data. Q2008 European Conference on Quality in Official Statistics, Roma.

DAAS, P.J.H., OSSEN, S.J.L., VIS-VISSCHERS, R.J.W.M., ARENDS-TOTH, J. (2009), Checklist for the

Quality evaluation of Administrative Data Sources. Discussion paper 09042, Statistics


DAAS, P.J.H., OSSEN, S.J.L., TENNEKES, M. (2010), Determination of Administrative Data Quality: Recent results and new developments, Q2010 European Conference on Quality in Official Statistics, Helsinki.

EUROSTAT (1999), Use of Administrative Sources for Business Statistics Purposes – Handbook on Good Practices, Luxembourg.

EUROSTAT (2003). Quality Assessment of Administrative Data for Statistical Purposes; Working group “Assessment of Quality in Statistics”, Luxembourg, 2-3 October, Web publication.

FAVERO G., TRIVELLATO U. (2000), Il lavoro attraverso gli ‘Annali: dalle preoccupazioni sociali alla misura della partecipazione e dei comportamenti nel mercato del lavoro, in P.

GERETTO (2000). (a cura di), Statistica ufficiale e storia d’Italia. Gli “Annali di Statistica” dal 1871 al 1997, Annali di Statistica, Serie X, Vol. 21, Roma, Istat.

FEDERAL COMMITTE ON STATISTICAL METHODOLOGY (2001), Measuring and Reporting Sources of Error in Surveys, US Office of Management and Budget, Statistical Policy Working Paper 31, Washington DC.

FILIPPUCCI C., DRUDI I. (1996), Model based estimates using longitudinal non-random surveys, in Rivista di Statistica Applicata, vol. 8, n. 4.

FILIPPUCCI C. (2000), Qualità delle statistiche e controllo del processo di misura, in Rivista Italiana di Economia Demografia e Statistica, vol. LIV, n. 2.

FILIPPUCCI C., BERNARDINI-PAPALIA R. (2000), Inference from non-random samples: a maximum entropy approach, Proceedings of “International Conference on establishment Surveys II”, American Statistical Association, Buffalo, 17-21 June.

FILIPPUCCI C., CALIA P. (2002),” Il controllo del processo della produzione statistica: una rassegna”, in FILIPPUCCI C. (a cura di), Strategie e modelli per il controllo della qualità dei dati, Milano, F. Angeli (17-56), 2002.

FORTINI M., GALLO G. (2009), Misure di sottocopertura anagrafica in base alla revisione postcensuaria del 2001, mimeo presentato a SIS-GCD, Febbraio.

FORTUNATI P. (1978), Ancora a proposito di servizi statistici pubblici, in “Scritti in onore di G. De Meo”, Isitituto di statistica economica, Università di Roma, Roma.

GROVES R.M., DILLMAN DON A., ELTINGE J.L., LITTLE R.J.A. (2002), Survey nonresponse, New York, Wiley.

GROOVES R.M., FOWLER. F.J., COUPER M.P., LEPKPWSKY J.M., SINGER E., TOURANGEAU R. (2004), Survey Methodology, New York, Wiley Interscience.

GATES G. (2009), Expanding statistical use of administrative data: a research proposal focused on privacy and confidentiality, in Federal Committee on Statistical Methodology Research Conference, Washington DC 2-4 November.

GRÜNEWALD, W., KÖRNER T. (2005), Quality on its way to maturity: Results of the European conference on Quality and methodology in Official Statistics (Q2004), in Journal of Official Statistics, vol. 21, n. 4, pp. 747-759.

HANSEN M. H. (1987), Some History and Reminiscences on Survey Sampling, in Statistical Science, vol. 2, n.2, pp. 180-190.

LESSLER J.T., KALSBECK W.D. (1992), Nonsampling Errors in Surveys, New York, J. Wiley & Sons.

LITTLE, R. E RUBIN, D. (1987), Statistical analysis with missing data. New York: John Wiley and Sons, pp. 50-60.

MORGANSTEIN D., MARKER D.A. (1997), Continuous Quality improvement in Statistical Agencies, in Lyberg L. et al. (1997), in LYBERG L. et al. (eds), Survey Measurement and Process Quality, New York, J. Wiley & Sons (475-500).

MOSER C. ET AL. (1983), Aspetti delle statistiche ufficiali italiane. Esame e proposte, [volume non numerato e senza indicazione della serie], Roma, Istat.

SÄRNDAL C. E SWENSSON B., WRETMAN J. (1992). Model Assisted Survey Sampling, Springer, New York.

SESTITO P., TRIVELLATO U. (2010), Indagini dirette e fonti amministrative: dall’alternativa all’ancora incompiuta integrazione, relazione presentata a “Giornata di studio in onore di G.M. Rey”, Roma, 5 marzo, in corso di pubblicazione.

THOMSEN I.B., LI-CHUN ZHANG (2008), A Predictive approach to representativity, IAOS Conference on Reshaping Official Statistics, Shanghai, China, October 12-14.

VALE, S., PERRY, J. AND PONT, M. (2001), Developing a quality strategy for business registers: a UK perspective, NTTS and ETK Conference, Crete.

WALLGREN, A., WALLGREN B. (2007), Register-based Statistics: Administrative Data for Statistical Purposes, Wiley Series in Survey Methodology, New York.

WOLTER K. M. (1986), Some coverage error models for census data, JASA, 81, 394: 339-346.




How to Cite

Filippucci, C. (2011). Statistical sources and statistical system in the information society. Statistica, 71(2), 189–211.