Test and asymptotic normality for mixed bivariate measure
DOI:
https://doi.org/10.6092/issn.1973-2201/3577Abstract
Consider a pair of random variables whose joint probability measure is the sum of an absolutely continuous measure, a discrete measure and a finite number of absolutely continuous measures on some lines called jum lines. The central limit theorem of the densities estimates is studied and its rate of convergence is given. A statistical test is developed to locate the jump points. An application on real data was conducted.References
M. BERTRAND-RETALI, (1978), Convergence d’un estimateur de la densité par la méthode du noyau, Revue Roumaine de Mathématiques pures et Appliquées. T XXIIII, N 3, 361-385.
P. BILLINGSLEY, (1968) Convergence of probability measures, Ed. Willey, New York.
D. BOSQ , J.P. LECOUTRE, (1987) Théorie de l'estimation fonctionnelle, Ed. Economica, Paris.
A. W. BOWMAN, P. HALL and D. M. TITTRINGTON, (1984), Cross-validation in nonparametric estimation of probabilities and probability density, Biometrika, 71, 341-352.
L. DEVROYE, (1987), A course in density estimation, Ed. Birkhauser.
J. FAN, (1991), On the optimal rates of convergence for nonparametric deconvolution problems, Annals of Statistics., 19, 1257-1272.
E. PARZEN, (1962), On the estimation of a probability density function and mode, The Annals of Mathematics Statistics, 33, 1065-1076.
M. ROSEMBLATT, (1965), Remarks on some nonparametric estimates of a density function, The Annals of Mathematics Statistics, 27, 832-837.
M. RACHDI, R. SABRE, (2000), Consistent estimates of the mode of the probability density function in nonparametric deconvolution problems. Statistics & Probability Letters, 47(2000), 105-114. 65-78.
R. SABRE, (1994), Estimation de la densité de la mesure spectrale mixte pour un processus symétrique stable strictement stationaire, Comptes Rendus de l’Académie des Sciences à Paris, t. 319, Série I, p. 1307-1310.
R. SABRE, (1995), Spectral density estimation for stationary stable random fields, Applicationes Mathematicae, 23, 2, p. 107-133.
R. SABRE, (2003), Nonparametric estimation of the continuous part of mixed measure, Revisita Statistica, vol. LXIII, n. 3, pp. 441-467.
A. STEFANSKI, (1990), Rates of convergence of some estimators in a class of deconvolution problems, Statistics & Probability Letters, 9, p. 229-235.
P. VIEU, (1996), A note on density mode estimation, Statistics & Probability Letters, 26, p. 297-307.
C.H. ZHANG, (1990), Fourier methods for estimating mixing densities and distributions, Annals of Statistics, 18, p. 806-830.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2010 Statistica
Copyrights and publishing rights of all the texts on this journal belong to the respective authors without restrictions.
This journal is licensed under a Creative Commons Attribution 4.0 International License (full legal code).
See also our Open Access Policy.