Test and asymptotic normality for mixed bivariate measure
DOI:
https://doi.org/10.6092/issn.1973-2201/3577Abstract
Consider a pair of random variables whose joint probability measure is the sum of an absolutely continuous measure, a discrete measure and a finite number of absolutely continuous measures on some lines called jum lines. The central limit theorem of the densities estimates is studied and its rate of convergence is given. A statistical test is developed to locate the jump points. An application on real data was conducted.References
M. BERTRAND-RETALI, (1978), Convergence d’un estimateur de la densité par la méthode du noyau, Revue Roumaine de Mathématiques pures et Appliquées. T XXIIII, N 3, 361-385.
P. BILLINGSLEY, (1968) Convergence of probability measures, Ed. Willey, New York.
D. BOSQ , J.P. LECOUTRE, (1987) Théorie de l'estimation fonctionnelle, Ed. Economica, Paris.
A. W. BOWMAN, P. HALL and D. M. TITTRINGTON, (1984), Cross-validation in nonparametric estimation of probabilities and probability density, Biometrika, 71, 341-352.
L. DEVROYE, (1987), A course in density estimation, Ed. Birkhauser.
J. FAN, (1991), On the optimal rates of convergence for nonparametric deconvolution problems, Annals of Statistics., 19, 1257-1272.
E. PARZEN, (1962), On the estimation of a probability density function and mode, The Annals of Mathematics Statistics, 33, 1065-1076.
M. ROSEMBLATT, (1965), Remarks on some nonparametric estimates of a density function, The Annals of Mathematics Statistics, 27, 832-837.
M. RACHDI, R. SABRE, (2000), Consistent estimates of the mode of the probability density function in nonparametric deconvolution problems. Statistics & Probability Letters, 47(2000), 105-114. 65-78.
R. SABRE, (1994), Estimation de la densité de la mesure spectrale mixte pour un processus symétrique stable strictement stationaire, Comptes Rendus de l’Académie des Sciences à Paris, t. 319, Série I, p. 1307-1310.
R. SABRE, (1995), Spectral density estimation for stationary stable random fields, Applicationes Mathematicae, 23, 2, p. 107-133.
R. SABRE, (2003), Nonparametric estimation of the continuous part of mixed measure, Revisita Statistica, vol. LXIII, n. 3, pp. 441-467.
A. STEFANSKI, (1990), Rates of convergence of some estimators in a class of deconvolution problems, Statistics & Probability Letters, 9, p. 229-235.
P. VIEU, (1996), A note on density mode estimation, Statistics & Probability Letters, 26, p. 297-307.
C.H. ZHANG, (1990), Fourier methods for estimating mixing densities and distributions, Annals of Statistics, 18, p. 806-830.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2010 Statistica
This journal is licensed under a Creative Commons Attribution 3.0 Unported License (full legal code).
Authors accept to transfer their copyrights to the journal.
See also our Open Access Policy.