Note on conditional mode estimation for functional dependent data


  • Sophie Dabo-Niang Université Lille3
  • Ali Laksaci Université Djillali Liabès



We consider α-mixing observations and deal with the estimation of the conditional mode of a scalar response variable Y given a random variable X taking values in a semi-metric space. We provide a convergence rate in Lpnorm of the estimator.


A. BERLINET, A. GANNOUN and E. MATZNER-LOBER, (1998), Normalité asymptotique d'estimateurs convergents du mode conditionnel. “Canad. J. Statist”, 26, pp. 365-380.

V. I. BOGACHEV, (1999), Gaussian measures. Math surveys and monographs, 62, Amer. Math. Soc.

T. BOLLERSLEV, (1986), General autoregressive conditional heteroskedasticity. “J. Econom”, 31, pp. 307-327.

D. BOSQ, (2000), Linear Processes in Function Spaces: Theory and applications. Lecture Notes in Statistics, 149, Springer.

G. COLLOMB, W. HARDLE, and S. HASSANI, S. (1987), A note on prediction via conditional mode estimation. “J. Statist.Plann. Inference”, 15, pp. 227-236.

S. DABO-NIANG, (2002), Estimation de la densité dans un espace de dimension infinie: application aux diffusions. “C. R., Math., Acad. Sci. Paris”, 334, pp. 213-216.

S. DABO-NIANG and N. RHOMARI, (2003), Estimation non paramétrique de la régression avec variable explicative dans un espace métrique. “C. R., Math., Acad. Sci. Paris”, 336, pp. 75-80.

S. DABO-NIANG, and N. RHOMARI, (2009), Kernel regression estimate in a Banach space. “J. Statist. Plann. Inference”, 139, 1421-1434.

S. DABO-NIANG, and A. LAKSACI, (2007), Estimation non paramétrique du mode conditionnel pour variable explicative fonctionnelle. “C. R., Math., Acad. Sci. Paris”, 344, pp. 49-52.

R. F. ENGLE, (1982), Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. “Econometrica”, 50, pp. 987-1007.

M. EZZAHRIOUI, and E. OULD-SAID, (2008). Asymptotic normality of nonparametric estimators of the conditional mode function for functional data. “J. Nonparametr. Stat”, 20, 3-18.

M. EZZAHRIOUI and E. OULD-SAID, (2006). On the asymptotic properties of a nonparametric estimator of the conditional mode function for functional dependent data. LMPA, janvier 2006 (Preprint).

F. FERRATY, A. LAKSACI, and PH. VIEU, (2005), Functional times series prediction via conditional mode. “C. R., Math., Acad. Sci. Paris”, 340, pp. 389-392.

F. FERRATY, A. LAKSACI, and PH. VIEU, (2006), Estimating some characteristics of the conditional distribution in nonparametric functional models. “Stat. Inference Stoch. Process”, 9, pp. 47-76.

F. FERRATY, and PH. VIEU, (2006), Nonparametric functional data analysis. Springer-Verlag, New-York.

T. GASSER, P. HALL, and B. PRESNELL, (1998). Nonparametric estimation of the mode of a distribution of random curves. “J. R.Statist. Soc, B”, 60, pp. 681-691.

D. A. JONES, (1978), Nonlinear autoregressive processes. “Proc. Roy. Soc. London A”, 360, pp. 71-95.

W. V. LI, and Q.M. SHAO, (2001), Gaussian processes: inequalities, small ball probabilities and applications. In Stochastic processes: Theory and Methods, Ed. C.R. Rao and D. Shanbhag. Hanbook of Statistics, 19, North-Holland, Amsterdam.

D. LOUANI, and E. OULD-SAID, (1999), Asymptotic normality of kernel estimators of the conditional mode under strong mixing hypothesis. “J. Nonparam. Stat”, 11, pp. 413-442.

E. MASRY, (2005), Nonparametric regression estimation for dependent functional data: asymptotic normality. “Stochastic Process. Appl”, 115, pp. 155-177.

T. OZAKI, (1979), Nonlinear time series models for nonlinear random vibrations. Technical report. Univ. of Manchester.

J. O. RAMSAY and B.W. SILVERMAN, (2002), Applied functional data analysis. Methods and case studies. Springer-Verlag, New York.

A. QUINTELA DEL RIO, and PH. VIEU, (1997), A nonparametric conditional mode estimate. “J. Nonparam. Stat”, 8, pp. 253-266.

M. ROSENBLATT, (1969), Conditional probability density and regression estimators. Multivariate Analysis II, Ed. P.R. Krishnaiah. Academic Press, New York and London.

E. YOUNDJÉ, (1993), Estimation non paramétrique de la densité conditionnelle par la méthode du noyau. Thèse de Doctorat, Université de Rouen.

R. YOKOYAMA, (1980), Moments bounds for stationary mixing sequences. “Z. Wahrs. verw. Gebiete”, 52, pp. 45-57




How to Cite

Dabo-Niang, S., & Laksaci, A. (2010). Note on conditional mode estimation for functional dependent data. Statistica, 70(1), 83–94.