Functional Modelling of Microarray Time Series


  • Maurice Berk Imperial College London
  • Giovanni Montana Imperial College London





T.W. ANDERSON (1958). Introduction to Multivariate Statistical Analysis. Wiley.

C. ANGELINI, D. D. CANDITIIS,M. PENSKY (2009). Bayesian models for two-sample time-course microarray experiments. Computational Statistics & Data Analysis, 53, no. 5, pp. 1547–1565. Statistical Genetics & Statistical Genomics: Where Biology, Epistemology, Statistics, and Computation Collide.

Z. BAR-JOSEPH,G. K.GERBER, D. K.GIFFORD, T. S. JAAKKOLA, I. SIMON (2003). Continuous representations of time-series gene expression data. Journal of Computational Biology, 10, no. 3-4, pp. 341–356.

Y. BENJAMINI, Y. HOCHBERG (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, no. 1, pp. 289–300.

A. BUJA, T. HASTIE, R. TIBSHIRANI (1989). Linear smoothers and additive models. The Annals of Statistics, 17, no. 2, pp. 453–510.

S. E. CALVANO, W. XIAO, D. R. RICHARDS, R. M. FELCIANO, H. V. BAKER, R. J. CHO, R. O. CHEN, B. H. BROWNSTEIN, J. P. COBB, S. K. TSCHOEKE, C. MILLER-GRAZIANO, L. L. MOLDAWER, M. N. MINDRINOS, R. W. DAVIS, R. G. TOMPKINS, S. F. LOWRY, L. S. C. R. PROGRAMINFLAMM, H. R. TO INJURY (2005). A network-based analysis of systemic inflammation in humans. Nature, 437, no. 7061, pp. 1032–1037.

J. J. EADY,G.M.WORTLEY, Y.M.WORMSTONE, J.C.HUGHES, S. B. ASTLEY, R. J. FOXALL, J. F. DOLEMAN, R.M. ELLIOTT (2005). Variation in gene expression profiles of peripheral blood mononuclear cells from healthy volunteers. Physiol. Genomics, 22, no. 3, pp. 402–411.

P. J. GREEN, B.W. SILVERMAN (1994). Nonparametric Regression and Generalized Linear Models. Chapman and Hall.

W. GUO (2002). Functional mixed effects models. Biometrics, 58, no. 1, pp. 121–128.

D. A. HARVILLE (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72, no. 358, pp. 320–388.

G. JAMES, T. HASTIE, C. SUGAR (2000). Principal component models for sparse functional data. Biometrika, 87, no. 3, pp. 587–602.

C. KARLOVICH,G. DUCHATEAU-NGUYEN,A. JOHNSON, P.MCLOUGHLIN,M. NAVARRO, C. FLEURBAEY, L. STEINER, M. TESSIER, T. NGUYEN, M. WILHELM-SEILER, J. CAULFIELD (2009). A longitudinal study of gene expression in healthy individuals. BMC Medical Genomics, 2, no. 1, p. 33.

N. M. LAIRD, J. H. WARE (1982). Random-effects models for longitudinal data. Biometrics, 38, pp. 963–974.

T. C. M. LEE (2003). Smoothing parameter selection for smoothing splines: a simulation study. Computational Statistics & Data Analysis, 42, no. 1-2, pp. 139 – 148.

X. LIU, M. C. K. YANG (2009). Identifying temporally differentially expressed genes through functional principal components analysis. Biostat, p. kxp022.

Y. LUAN, H. LI (2003). Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics, 19, no. 4, pp. 474–482.

P. MA, C. I. CASTILLO-DAVIS,W. ZHONG, J. S. LIU (2006). A data-driven clustering method for time course gene expression data. Nucleic Acids Res, 34, no. 4, pp. 1261–1269.

J. A. NELDER, R. MEAD (1965). A Simplex Method for Function Minimization. The Computer Journal, 7, no. 4, pp. 308–313.

J. RAMSAY, B.W. SILVERMAN (2005). Functional Data Analysis. Springer, 2 ed.

J. RICE, C. WU (2001). Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics, 57, pp. 253–259(7).

G. K. ROBINSON (1991). That BLUP is a good thing: the estimation of random effects. Statistical Science, 6, no. 1, pp. 15–32.

P. T. SPELLMAN, G. SHERLOCK, M. Q. ZHANG, V. R. IYER, K. ANDERS, M. B. EISEN, P. O. BROWN, D. BOTSTEIN, B. FUTCHER (1998). Comprehensive identification of cell cycleregulated genes of the yeast Saccharomyces cerevisiae bymicroarray hybridization. Mol. Biol. Cell, 9, no. 12, pp. 3273–3297.

J. D. STOREY, J. E. TAYLOR, D. SIEGMUND (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach. Journal of the Royal Statistical Society. Series B (StatisticalMethodology), 66, no. 1, pp. 187–205.

J. D. STOREY, R. TIBSHIRANI (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100, no. 16, pp. 9440–9445.

J. D. STOREY,W. XIAO, J. T. LEEK, R. G. TOMPKINS, R.W. DAVIS (2005). Significance analysis of time course microarray experiments. Proc Natl Acad Sci U S A, 102, no. 36, pp. 12837–12842.

Y. C. TAI, T. P. SPEED (2006). A multivariate empirical bayes statistic for replicated microarray time course data. Annals of Statistics, 34, no. 5, pp. 2387–2412.

Y. TANG, A. LU, R. RAN, B. J. ARONOW, E. K. SCHORRY, R. J. HOPKIN, D. L. GILBERT, T. A. GLAUSER, A. D. HERSHEY,N.W. RICHTAND,M. PRIVITERA, A. DALVI, A. SAHAY, J. P. SZAFLARSKI, D. M. FICKER, N. RATNER, F. R. SHARP (2004). Human blood genomics: distinct profiles for gender, age and neurofibromatosis type 1. Molecular Brain Research, 132, no. 2, pp. 155 – 167. Neurogenomics.

V. G. TUSHER, R. TIBSHIRANI, G. CHU (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America, 98, no. 9, pp. 5116–5121.

G. WAHBA (1977). Practical approximate solutions to linear operator equations when the data are noisy. SIAM Journal on Numerical Analysis, 14, no. 4, pp. 651–667.

J. WANG, S. K. KIM (2003). Global analysis of dauer gene expression in Caenorhabditis elegans. Development, 130, no. 8, pp. 1621–1634.

A. R.WHITNEY,M.DIEHN, S. J. POPPER,A. A.ALIZADEH, J.C. BOLDRICK,D. A. RELMAN, P. O. BROWN (2003). Individuality and variation in gene expression patterns in human blood. Proceedings of the National Academy of Sciences of the United States of America, 100, no. 4, pp. 1896–1901.

H. WU, J.-T. ZHANG (2006). Nonparametric Regression Methods for Longitudinal Data Analysis. Wiley.

F. YAO, H.-G. MÜLLER, J.-L.WANG (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100, no. 470, pp. 577–590.




How to Cite

Berk, M., & Montana, G. (2009). Functional Modelling of Microarray Time Series. Statistica, 69(2/3), 159–186.