Gini s ideas: new perspectives for modern multivariate statistical analysis


  • Angela Montanari Alma Mater Studiorum - Università di Bologna
  • Paola Monari Alma Mater Studiorum - Università di Bologna



Corrado Gini (1884-1964) may be considered the greatest Italian statistician. We believe that his important contributions to statistics, however mainly limited to the univariate context, may be profitably employed in modern multivariate statistical methods, aimed at overcoming the curse of dimensionality by decomposing multivariate problems into a series of suitably posed univariate ones.
In this paper we critically summarize Gini’s proposals and consider their impact on multivariate statistical methods, both reviewing already well established applications and suggesting new perspectives.
Particular attention will be devoted to classification and regression trees, multiple linear regression, linear dimension reduction methods and transvariation based discrimination.


BACCINI, A., DE FALGUEROLLES A. (1993). Analysing multivariate income data with a PCA based on Gini’s mean difference, “Bull. of ISI”, 59-60.

BOWLEY, A.L. (1920). Elements of statistics, Kin, London.

BRIEMAN, L., FRIEDMAN J.H., OLSHEN, R.A. and STONE C.J. (1984). Classification and regression trees, Wadsworth International Group, Belmont, California.

CALÒ D.G. (2004). On a transvariation based measure of group separability, submitted for publication in “Journal of Classification”.

COSTA M., GALIMBERTI G., MONTANARI A. (2005). Binary segmentation methods based on Gini index: a new approach to the muldimensional analysis of income inequalities submitted for publication.

DAGUM C. (1987). Gini Ratio, “The New Palgrave: a Dictionary of Economics”, vol. II, 529-532.

DAGUM C. (1997). Decomposition and Interpretation of Gini and the Generalized Entropy Inequality Measures, “Proceedings of the American Statistical Association, Business and Economic Statistics Section”, 200-205.

FISHER R.A. (1921). On the probable error of a coefficient of correlation deduced from a small sample, “Metron”, 1, 3-32.

FISHER R.A. (1936). The use of multiple measurements in taxonomic problems, “The annals of eugenics”, 7, 179-188.

FULLER W.A. (1987). Measurement error models, Wiley, New York.

GINI C. (1912). Variabilità e mutabilità, Studi economico-giuridici pubblicati per cura della Facoltà di Giurisprudenza della Regia Università di Cagliari, Anno III, parte 2, also reproduced in C. Gini (1939) op. cit.

GINI C. (1914). Sulla misura della concentrazione e della variabilità dei caratteri, Atti del R. Istituto Veneto di Scienze, Lettere e Arti, LXXIII, parte II, 1203-1248.

GINI C. (1916). Il concetto di transvariazione e le sue prime applicazioni, “Giornale degli economisti and Rivista di statistica”.

GINI C. (1921). Sull’interpolazione di una retta quando i valori della variabile indipendente sono affetti da errori accidentali, “Metron”, 1, 63-82.

GINI C. (1939). Memorie di metodologia statistica, Vol. I, Variabilità e concentrazione, Giuffrè, Milano.

GINI C. (1959). Transvariazione, Libreria Goliardica, Roma.

GINI C., GALVANI L. (1929). Di talune estensioni dei concetti di media ai caratteri qualitativi, “Metron”, 8, 3-209.

GINI C., LIVADA G. (1959). Transvariazione a più dimensioni in C. Gini (1959).

GINI C., LIVADA G. (1959). Nuovi contributi alla teoria della transvariazione in C. Gini (1959).

HAND D.J. (1997). Construction and Assessment of Classification Rules, Wiley.

HETTMANSPERGER T.P. and MCKEAN J.W. (1998). Robust Nonparametric Statistical Methods, Wiley.

HUBER P.J. (1985). Projection pursuit (with discussion), the Annals of statistics, 13, 435-475.

JAECKEL L.A. (1972). Estimating regression coefficients by minimizing the dispersion of the residuals, “Annals of Mathematical Statistics”, 43, 1449-1458.

LIGHT R.J., MARGOLIN B.H. (1971). An analysis of variance for categorical data, “J. Amer. Statisti. Assoc.”, 66, 534-544.

MONARI P., MONTANARI A. (2003). Corrado Gini and multivariate statistical analysis: the (so far) missing link, in “Between Data Science and Applied Data Analysis” (Eds. M. Schader, W. Gaul e M. Vichi) Springer-Verlag Berlin, Heidelberg, 321-328.

MONTANARI A. (2004). Linear discriminant analysis and transvariation, “Journal of Classification”,

, 71-88.

MONTANARI A., CALÒ D. G. (1998). Two Group Linear Discrimination Based on Transvariation Measures, in “Advances in Data Science and Classification” (Eds. A. Rizzi, M. Vichi and H.H. Bock) Springer-Verlag Berlin, Heidelberg, 97-104.

OLKIN, I. and YITZHAKI S. (1992). Gini regression analysis, “International statistical review”, 60, 185-196.

PEARSON K. (1901). On lines and planes of closest fit to a system of points in space, “Philosophical Magazine”, 2, 559-572.

PODDER N. (2002). The theory of multivariate Gini regression and its applications, working paper.

POSSE C. (1992). Projection pursuit discriminant analysis for two groups, “Communications in statistics, Theory and methods”, 21, 1-19.

SCHECHTMAN, E., YITZAKI S. (1987). A measure of association based on Gini’s mean difference, “Communication in Statistics, Theory and Methods”, 16, 207-231.

SMALL C.G. (1990). A survey of multidimensional medians, “International statistical review”, 58, 263-277.

STUART A. (1954). The correlation between variate values and ranks in sample from continuous distribution, “British Journal of Statistical Psychology”, 7, 37-44.

TAGUCHI T. (1981). On a multiple Gini’s coefficient and some concentrative regressions, “Metron”, 39, 69-98.




How to Cite

Montanari, A., & Monari, P. (2008). Gini s ideas: new perspectives for modern multivariate statistical analysis. Statistica, 68(3/4), 239–254.