Unidimensionality in the Rasch model: how to detect and interpret
DOI:
https://doi.org/10.6092/issn.1973-2201/3508Abstract
Unidimensionality, that is the items in a questionnaire measure only a single construct, is a fundamental requirement for the Rasch model. The paper deals with the detection of unidimensionality making use of principal components analysis of residuals and item fit statistics. Simulated bi-dimensional data sets are analized in order to find regolarities in the behavoiur of these statistical tools. The results are applied to a real database coming from the satisfaction section of the first national survey concerning the social services sector carried out in ItalyReferences
D. ANDRICH, (1978), A rating formulation for ordered response categories, “Psychometrika”, 43, pp. 561-573.
T.G. BOND, C.M. FOX, (2007), Applying the Rasch Model. Fundamental measurement in the human sciences, snd Edition, Erlbaum, Mhawah NJ.
C. BORZAGA, M. MUSELLA, (2003), Produttività ed efficienza nelle organizzazioni nonprofit. Il ruolo dei lavoratori e delle relazioni di lavoro, Edizioni31, Trento.
E. BRENTARI, S. GOLIA, (2008), Measuring Job Satisfaction in the Social Services Sector with the Rasch Model, “Journal of Applied Measurement”, 9 (1), pp. 45-56.
K.B. CHRISTENSEN, J.B. BJOMER, S. KREINER, J.H. PETERSEN, (2002), Testing unidimensionality in polytomous Rasch models, “Psychometrika”, 67 (4), pp. 563-574.
C.A.W. GLAS, N.D. VERHELST, (1995), Testing the Rasch model, in G.H. FISCHER, I.W. MOLENAAR (Eds.), Rasch models - foundations, recent developments, and applications, Springer-Verlag.
J.E. GUSTAFSSON, (1980), Testing and obtaining fit of data to the Rasch model, “British Journal of Mathematical and Statistical Psychology”, 33, pp. 205-233.
J. HATTIE (1985), Methodology review: assessing unidimensionality of tests and items, “Applied Psychological Measurement”, 9 (2), pp. 139-164.
J.M. LINACRE (2006), WINSTEPS Rasch measurement computer program, Chicago: Winsteps.com.
P. MARTIN-LÖF, (1973), Statistiska modeller [Statistical models.] Anteckningar från seminarier lasåret 1969-1970, utarbetade av Rolf Sundberg. Obetydligt ändrat nytryck, October 1973. Stockholm: Institütet för Försäkringsmatemetik ochMatematisk Statistisk vid Stockholms Universitet.
G. RASCH, (1960), Probabilistic models for some intelligence and attainment tests, Copenhagen, The Danish Institute of Educational Research.
R.M. SMITH, (1996), A comparison of methods for determining dimensionality in Rasch measurement, “Structural Equation Modeling”, 3, pp. 25-40.
JR. E.V. SMITH, (2002), Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals, “Journal of Applied Measurement”, 3, pp. 205-231.
W.F. STOUT, (1987), A nonparametric approach for assessing latent trait unidimensionality, “Psychometrika”, 52, pp. 293-325.
B.D WRIGHT, G.N. MASTERS, (1982), Rating Scale Analysis, MESA Press, Chicago.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2007 Statistica
Copyrights and publishing rights of all the texts on this journal belong to the respective authors without restrictions.
This journal is licensed under a Creative Commons Attribution 4.0 International License (full legal code).
See also our Open Access Policy.