Discussion of the Paper "Connecting Model-Based and Model-Free Approaches to Linear Least Squares Regression" by Lutz Dümbgen and Laurie Davies (2024)
DOI:
https://doi.org/10.60923/issn.1973-2201/22202References
A. BASU, I. R.HARRIS, N. L.HJORT, M. JONES (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85, no. 3, pp. 549–559.
R. BERAN (1977). Minimum hellinger distance estimates for parametric models. The Annals of Statistics, pp. 445–463.
A. BUJA, L. BROWN, R. BERK, E. GEORGE, E. PITKIN, M. TRASKIN, K. ZHANG, L. ZHAO (2019). Models as approximations I. Statistical Science, 34, no. 4, pp. 523–544.
B.-E. CHÉRIEF-ABDELLATIF, P. ALQUIER (2022). Finite sample properties of parametric MMD estimation: robustness to misspecification and dependence. Bernoulli, 28, no. 1, pp. 181–213.
L. DÜMBGEN, L. DAVIES (2024). Connecting model-based and model-free approaches to linear least squares regression. Statistica, 84, no. 2, pp. 65–81.
B. PARK, S. BALAKRISHNAN, L.WASSERMAN (2023). Robust universal inference. arXiv preprint arXiv:2307.04034.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Statistica

This work is licensed under a Creative Commons Attribution 4.0 International License.