Discussion of the Paper "Connecting Model-Based and Model-Free Approaches to Linear Least Squares Regression" by Lutz Dümbgen and Laurie Davies (2024)

Authors

  • Larry Wasserman Carnegie Mellon, Pittsburgh, PA, USA

DOI:

https://doi.org/10.60923/issn.1973-2201/22202

References

A. BASU, I. R.HARRIS, N. L.HJORT, M. JONES (1998). Robust and efficient estimation by minimising a density power divergence. Biometrika, 85, no. 3, pp. 549–559.

R. BERAN (1977). Minimum hellinger distance estimates for parametric models. The Annals of Statistics, pp. 445–463.

A. BUJA, L. BROWN, R. BERK, E. GEORGE, E. PITKIN, M. TRASKIN, K. ZHANG, L. ZHAO (2019). Models as approximations I. Statistical Science, 34, no. 4, pp. 523–544.

B.-E. CHÉRIEF-ABDELLATIF, P. ALQUIER (2022). Finite sample properties of parametric MMD estimation: robustness to misspecification and dependence. Bernoulli, 28, no. 1, pp. 181–213.

L. DÜMBGEN, L. DAVIES (2024). Connecting model-based and model-free approaches to linear least squares regression. Statistica, 84, no. 2, pp. 65–81.

B. PARK, S. BALAKRISHNAN, L.WASSERMAN (2023). Robust universal inference. arXiv preprint arXiv:2307.04034.

Downloads

Published

2025-11-25

How to Cite

Wasserman, L. (2024). Discussion of the Paper "Connecting Model-Based and Model-Free Approaches to Linear Least Squares Regression" by Lutz Dümbgen and Laurie Davies (2024). Statistica, 84(2), 115–117. https://doi.org/10.60923/issn.1973-2201/22202