Reliability Estimation of Dependence Structure System For Huang-Kotz Iterated FGM With Lindley Marginal
DOI:
https://doi.org/10.6092/issn.1973-2201/18225Keywords:
Lindley distribution, Stress-strength reliability, IFGM copula, Pseudo likelihood estimation, Monte-Carlo simulationAbstract
Huang and Kotz (1984) proposed a two-parameter extension of the original Fralie-Gumble-Morgenstern (FGM) family to model the higher association between the random variables. In this problem, we develop an iterated FGM (IFGM) based dependent stress-strength reliability model using Lindley marginals. Some important statistical and reliability properties of the proposed distribution are also derived. The prime goal of this study is to investigate the effect of stress-strength reliability parameters with respect to the variation in the dependence parameters and . Further, we compared the IFGM stress-strength reliability model with the original FGM using graphical representations to assess whether reliability was over or under-estimated. Finally, we investigated the performance of the proposed estimators through both Monte Carlo simulations as well as real data sets.
References
C. AMBLARD, S. GIRARD (2009). A new symmetric extension of FGM copulas. Metrika, 70, no. 1, pp. 1–17.
P. ARBENZ (2013). Bayesian copulae distributions, with application to operational risk management-some comments. Methodology and Computing in Applied Probability, 15, no. 1, pp. 105–108.
M. ARSHAD, A. K. PATHAK, Q. J. AZHAD, M. KHETAN (2023). Modeling bivariate data using linear exponential and Weibull distributions as marginals. Mathematica Slovaca, 73, no. 4, pp. 1075–1096.
I. BAIRAMOV, S. KOTZ (2002). Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions. Metrika, 56, pp. 55–72.
A. BASU (1971). Bivariate failure rate. Journal of the American Statistical Association, 66, no. 333, pp. 103–104.
H. BEKRIZADEH, G. A. PARHAM, M. R. ZADKARMI (2012). The new generalization of Farlie–Gumbel–Morgenstern copulas. Applied Mathematical Sciences, 6, no. 71, pp. 3527–3533.
H. BEKRIZADEH, G. A. PARHAM, M. R. ZADKARMI (2013). Weighted Clayton copulas and their characterizations: application to probable modeling of the hydrology data. Journal of Data Science, 11, no. 2, pp. 293–303.
R. M. CORLESS, G. H. GONNET, D. E. HARE, D. J. JEFFREY, D. E. KNUTH (1996). On the Lambert W function. Advances in Computational Mathematics, 5, pp. 329–359.
F. DOMMA, S. GIORDANO (2013). A copula-based approach to account for dependence in stress-strength models. Statistical Papers, 54, no. 3, pp. 807–826.
D. J. FARLIE (1960). The performance of some correlation coefficients for a general bivariate distribution. Biometrika, 47, no. 3/4, pp. 307–323.
E. J. GUMBEL (1960). Bivariate exponential distributions. Journal of the American Statistical Association, 55, no. 292, pp. 698–707.
J. HUANG, S. KOTZ (1984). Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions. Biometrika, 71, no. 3, pp. 633–636.
J. S. HUANG, S. KOTZ (1999). Modifications of the Farlie-Gumbel-Morgenstern distributions. A tough hill to climb. Metrika, 49, no. 2, pp. 135–145.
A. JAMES, N. CHANDRA (2022). Dependence stress-strength reliability estimation of bivariate xgamma exponential distribution under copula approach. Palestine Journal of Mathematics, 11, pp. 213–233.
A. JAMES, N. CHANDRA, M. PANDEY (2022). A copula based stress-strength reliability estimation with Lindley marginals. Journal of Reliability and Statistical Studies, 15, no. 1, pp. 341–380.
A. JAMES, N. CHANDRA, N. SEBASTIAN (2023). Stress-strength reliability estimation for bivariate copula function with rayleigh marginals. International Journal of System Assurance Engineering and Management, 14, no. 1, pp. 196–215.
H. JOE (1997). Multivariate Models and Multivariate Dependence Concepts. Chapman and Hall/CRC, New York.
N. L. JOHNSON, S. KOTZ (1975). A vector multivariate hazard rate. Journal of Multivariate Analysis, 5, no. 1, pp. 53–66.
F. LOUZADA, A. K. SUZUKI, V. G. CANCHO, F. L. PRINCE, G. A. PEREIRA, et al. (2012). The long-term bivariate survival FGM copula model: an application to a brazilian HIV data. Journal of Data Science, 10, no. 3, pp. 511–535.
C.A.MCGILCHRIST, C.W.AISBETT (1991). Regression with frailty in survival analysis. Biometrics, 47, no. 2, pp. 461–466.
D. MORGENSTERN (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt fur Mathematische Statistik, 8, pp. 234–235.
R. B. NELSEN (2007). An introduction to copulas. Springer Science & Business Media, New York.
A. PATHAK, P. VELLAISAMY (2016). Various measures of dependence of a new asymmetric generalized Farlie–Gumbel–Morgenstern copulas. Communications in Statistics - Theory and Methods, 45, no. 18, pp. 5299–5317.
A. PATHAK, P. VELLAISAMY (2022). A bivariate generalized linear exponential distribution: properties and estimation. Communications in Statistics - Simulation and Computation, 51, no. 9, pp. 5426–5446.
D. D. PATIL, U. NAIK-NIMBALKAR (2017). Computation and estimation of reliability for some bivariate copulas with Pareto marginals. Journal of Statistical Computation and Simulation, 87, no. 18, pp. 3563–3589.
D. D. PATIL, U. NAIK-NIMBALKAR, M. KALE (2024). Estimation of P[Y < X] for dependence of stress–strength models with Weibull marginals. Annals of Data Science, 11, pp. 1303–1340.
P. G. SANKARAN, N. U. NAIR (1991). On bivariate vitality functions. In Proceeding of National Symposium on Distribution Theory.
D. N. SHANBHAG, S. KOTZ (1987). Some new approaches to multivariate probability distributions. Journal of Multivariate Analysis, 22, no. 2, pp. 189–211.
R. SHANKER, S. N. SHARMA, R. SHANKER (2013). A two-parameter Lindley distribution for modeling waiting and survival times data. Applied Mathematics, 4, no. 2, pp. 363–368.
M. SKLAR (1959). Fonctions de répartition à N dimensions et leurs marges. Annales de l’Institut Statistique de l’Université de Paris, 8, no. 3, pp. 229–231.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Statistica
This work is licensed under a Creative Commons Attribution 4.0 International License.