On the Asymptotic Behavior of the Maximum and Record Values of Multivariate Data Using the R-ordering principle

Authors

  • Mahmoud H. Harpy Prince Sattam Bin Abdulaziz University, Saudi Arabia
  • Haroon M. Barakat Zagazig University, Egypt

DOI:

https://doi.org/10.6092/issn.1973-2201/17805

Keywords:

Weak convergence , Multivariate extremes, Reduced ordering principle, Sup-norm, Logistic-norm, D-norm

Abstract

By using a sup-norm, sufficient conditions for the convergence of multivariate extremes and the potential limit types were fully identified by Barakat et al. (2020a). In this paper, we prove an intriguing result that by using the sup-norm, the weak convergence of multivariate extremes to the Fréchet type implies the convergence of those multivariate extremes in an arbitrary D-normto the same type-limit by using the same normalizing constants. As a result of this finding, the weak convergence to the Fréchet type takes place by employing any logistic norm. Moreover, the two other possible limit types (max-Weibull and Gumbel types) are discussed. Similar findings are also demonstrated for multivariate record values. Finally, we demonstrate in a real-world scenario how to model multivariate extreme data sets utilizing the R-ordering principle and different norms.

References

M.AHSANULLAH, V. B.NEVZOROV (2001). Ordered Random Variables. Nova Science Publishers, Inc., Huntington, NY.

B. C. ARNOLD, N. BALAKRISHNAN, H. N. NAGARAJA (1998). Records. Wiley, New York.

B. C. ARNOLD, E. CASTILLO, J. M. SARABIA (2009). Multivariate order statistics via multivariate concomitants. Journal of Multivariate Analysis, 100, no. 4, pp. 946–951.

I. G. BAIRAMOV (2006). On the ordering of random vectors in a norm sense. Journal of Multivariate Analysis, 97, no. 5, pp. 797–809.

I. G. BAIRAMOV, O. L. GEBIZLIOGLU (1998). On the ordering of random vectors in a norm sense. Journal of Applied Statistical Science, 6, no. 1, pp. 77–86.

H. M. BARAKAT (2012). Asymptotic behavior of the record value sequence. Journal of the Korean Statistical Society, 41, no. 3, pp. 369–374.

H. M. BARAKAT, M. A. A. ELGAWAD (2017). Asymptotic behavior of the joint record values, with applications. Statistics & Probability Letters, 124, pp. 13–21.

H. M. BARAKAT, M. H. HARPY (2021). Asymptotic behavior of the records of multivariate random sequences in a norm sense. Mathematica Slovaca, 70, no. 6, pp. 1457–1468.

H. M. BARAKAT, M. H. HARPY, A. M. SEMIDA (2024). Asymptotic maxima of folded distributions with application to the multivariate extreme theory. Journal of Computational and Applied Mathematics, 443, p. 115765.

H. M. BARAKAT, E. M. NIGM, M. H. HARPY (2020a). Asymptotic behavior of the maximum of multivariate order statistics in a norm sense. Brazilian Journal of Probability and Statistics, 34, no. 4, pp. 868–884.

H. M. BARAKAT, E. M. NIGM, M. H. HARPY (2020b). Limit theorems for univariate and bivariate order statistics with variable ranks. Statistics, 54, no. 4, pp. 737–755.

H. M. BARAKAT, E. M. NIGM, O. M. KHALED (2019). Statistical Techniques for Modelling Extreme Value Data and Related Applications. Cambridge Scholars Publishing, London.

V. BARNET (1976). The ordering of multivariate data. Journal of the Royal Statistical Society: Series A (General), 139, no. 3, pp. 318–344.

F. CHEBANA, T. B. M. J. OUARDA (2011). Multivariate extreme value identification using depth functions. Environmetrics, 22, no. 3, pp. 441–455.

M. FALK (2019). Multivariate Extreme Value Theory and D-norms. Springer Series in Operations Research and Financial Engineering.

M. FALK, J. HÜSLER, R. D. REISS (2004). Laws of Small Numbers: Extremes and Rare Events. Birkhauser, Basel, 2nd ed.

M. FALK, J. HÜSLER, R. D. REISS (2011). Laws of Small Numbers: Extremes and Rare Events. Birkhauser, Basel, 3rd ed.

M. FALK, F. WISHECKEL (2018). Multivariate order statistics: the intermediate case. Sankhya A, 80, no. 1, pp. 110–120.

T. FULLER (2016). An Approach to the D-Norms with Functional Analysis. Master thesis, University ofWürzburg, Germany.

J.GALAMBOS (1987). The Asymptotic Theory of Extreme Order Statistics. Wiley, FI,New York, 2nd ed.

Y. HE, J. H. J. EINMAH (2017). Estimation of extreme depth-based quantile regions. Journal of the Royal Statistical Society Series B: Statistical Methodology, 79, no. 2, pp. 449–461.

D. HOFMANN (2009). Characterization of the D-Norm Corresponding to a Multivariate Extreme Value Distribution. URL http://opus.bibliothek.uni-wuerzburg.de/volltexte/2009/4134/. Ph.D. thesis, University ofWürzburg, Germany.

M. R. LEADBETTER, G. LINDGREN, H. ROOTZ´eN (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, Verlag, New York, Heidelberg, Berlin.

M. SREEHARI, S. RAVI, R. VASUDEVA (2011). On sums of independent random variables whose distributions belong to the max domain of attraction of max stable laws. Extremes, 14, no. 3, pp. 267–283.

S. TAT, M. FARIDROHANI (2021). A new type of multivariate records: depth-based records. Statistics, 55, no. 2, pp. 296–320.

J. W. TUKEY (1974). Mathematics and picturing data. Proceedings of the International Congress of Mathematicians, , no. 2, pp. 523–532.

Downloads

Published

2024-12-10

How to Cite

Harpy, M. H., & Barakat, H. M. (2023). On the Asymptotic Behavior of the Maximum and Record Values of Multivariate Data Using the R-ordering principle. Statistica, 83(2), 165–179. https://doi.org/10.6092/issn.1973-2201/17805

Issue

Section

Articles