# Comparison of Estimation Methods of the Power Generalized Weibull Distribution

## DOI:

https://doi.org/10.6092/issn.1973-2201/12924## Keywords:

Power Generalized Weibull distribution, maximum product of spacings estimators, percentile estimators, Order Statistics## Abstract

This article aims to discuss different estimation methods for the power generalized Weibull distribution. An extensive simulation study is carried out to assess the effectiveness of the estimation of model parameters using numerous well known classical methods of estimation. Furthermore, the Bayes estimators of the unknown parameters are also obtained under different loss functions. Monte Carlo simulations are used to assess the performances of the proposed estimators. Besides, bootstrap/ credible intervals are obtained based on considered methods of estimation. Finally, the potentiality of the distribution is illustrated by means of re-analyzing one real data set.

## References

A. A. ABD-EL-BASET, M. G. M. GHAZAL (2000). Exponentiated additive Weibull distribution. Reliability Engineering and System Safety, 193, pp. 106–663.

A. Z. AFIFY, D. KUMAR, I. ELBATAL (2020). Marshall-Olkin power generalized Weibull distribution with applications in engineering and medicine. Journal of Statistical Theory and Applications, 19, no. 2, pp. 223–237.

S. ALI (2013). On the Bayesian estimation of the weighted Lindley distribution. Journal of Statistical Computation and Simulation, 10, pp. 262–279.

S. ALI, S. M. RAZA, M. ASLAM, M. M. BUTT (2021). CEV-Hybrid DEWMA charts for censored data using Weibull distribution. Communications in Statistics-Simulation and Computation, 50, no. 2, pp. 446–461.

R. ALLOYAROVA, M. NIKULIN, N. PYA, V. VOINOV (2007). The power-generalized Weibull probability distribution and its use in survival analysis. Communications in Dependability and Quality Management, 10, pp. 5–15.

V. BAGDONAVIˇc IUS, M. NIKULIN (2001). Accelerated Life Models: : Modeling and Statistical Analysis. CRC press, United States.

V. BAGDONAVIˇc IUS, M. NIKULIN (2011). Chi-squared goodness of fit test for right censored data. International Journal of Applied Mathematics and Statistics, 24, pp. 30–50.

V. BAGDONAVIÇIUS, L. CLERJAUD, M. NIKULIN (2006). Power generalized Weibull in accelerated life testing. Preprint, 602, p. 28.

H. S. BAKOUCH, S. DEY, P. L. RAMOS, F. LOUZADA (2017). Binomial-exponential 2 distribution: different estimation methods with weather applications. Trends in Computational and Applied Mathematics, 18, no. 2, pp. 233–251.

A. M. BASHEER (2019). Alpha power inverse Weibull distribution with reliability application. Journal of Taibah University for Science, 13, pp. 423–432.

M. BEBBINGTON, C. D. LAI, R. ZITIKIS (2007). A flexible Weibull extension. Reliability Engineering and System Safety, 92, pp. 719–726.

R. C. H.CHENG,N.A. K.AMIN (1983). Estimating parameters in continuous univariate distributions with a shifted origin. Journal of the Royal Statistical Society:Series B, 45, pp. 394–403.

G. M. CORDEIRO, M. M. E. ORTEGA, S. NADARAJAH (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347, pp. 1399–1429.

S. DEY, B. AL-ZAHRANI, S. BASLOOM (2017b). Dagum distribution: properties and different methods of estimation. Communications in Statistics-Simulation and Computation, 06, pp. 74–92.

S. DEY, S. ALI, C. PARK (2015). Weighted exponential distribution: properties and different methods of estimation. Journal of Statistical Computation and Simulation, 85, pp. 3641–3661.

S. DEY, A. ALZAATREH, C. ZHANG, D. KUMAR (2017e). A new extension of generalized exponential distribution with application to ozone data. Ozone: Science and Engineering, 39, pp. 273–285.

S. DEY, T. DEY, S. ALI, , M. S. MULEKAR (2016). Two-parameter Maxwell distribution: properties and different methods of estimation. Journal of Statistical Theory and Practice, 10, pp. 291–310.

S. DEY, D. KUMAR, R. L. RAMOS, F. LOUZADA (2017a). Exponentiated Chen distribution: properties and estimation. Communications in Statistics-Simulation and Computation, 46, pp. 8118–8139.

S.DEY, E. RAHEEM, S.MUKHERJEE (2017c). Statistical properties and different methods of estimation of transmuted Rayleigh distribution. Revista Colombiana de Estadística, 40, pp. 165–203.

S. DEY, E. RAHEEM, S. MUKHERJEE, H. K. T. NG (2017d). Two parameter exponentiated-Gumbel distribution: properties and estimation with flood data example. Journal of Statistics and Management Systems, 20, pp. 197–233.

S. DEY, C. ZHANG, A. ASGHARZADEH, M. GHORBANNEZHAD (2017f). Comparisons of methods of estimation for the NH distribution. Annals of Data Science, 04, pp. 441–455.

B. EFRON (1988). Logistic regression, survival analysis, and the Kaplan-Meier curve. Journal of the American Statistical Association, 83, pp. 414–425.

M. E. GHITANY, E. K. AL-HUSSAINI, R. A. AL-JARALLAH (2005). Marshall-Olkin extended Weibull distribution and its application to censored data. Journal of Applied Statistics, 32, pp. 1025–1034.

W. GUI (2017). Exponentiated half-logistic distribution: Different estimation methods and joint confidence regions. Communications in Statistics-Simulation and Computation, 46, pp. 4600–4617.

A. A. KADHEM, N. I. A.WAHAB, I. ARIS, J. JASNI, A.N. ABDALLA (2017). Advanced wind speed prediction model based on a combination of Weibull distribution and an artificial neural network. Energies, 10, p. 1744.

A. KHAOULA, S.DEY, D. KUMAR,N. SEDDIK-AMEUR (2021). Different classical methods of estimation and chi-squared goodness-of-fit test for unit generalized inverse Weibull distribution. Austrian Journal of Statistics, 50, pp. 77–100.

D. KUMAR, S. DEY (2017). Power generalized Weibull distribution based on order statistics. Journal of Statistical Research, 51, pp. 61–71.

D. KUMAR, N. JAIN (2018). Power generalized Weibull distribution based on generalised order statistics. Journal of Data Science, 16, pp. 621–646.

D. KUNDU, M. Z. RAQAB (2005). Generalized Rayleigh distribution: different methods of estimations. Computational Statistics and Data Analysis, 49, pp. 187–200.

E. T. LEE, J. W. WANG (2003). Statistical Methods for Survival Data Analysis, 3rd eds. JohnWiley & Sons, New York.

F. H. MAHMOOD, A. K. RESEN, A. B. KHAMEES (2020). Wind characteristic analysis based on Weibull distribution of Al-Salman site. Iraq Energy reports, 06, pp. 79–87.

J. MAZUCHELI, F. LOUZADA, M. E. GHITANY (2013). Comparision of estimation methods for the parameters of the weighted Lindley distribution. Iraq Energy reports, 220, pp. 463–471.

M. M. MOHIE-EL-DIN, S. E. ABU-YOUSSEF, S. A. A. NAHED, A. M. A. EL-RAHEEM (2015). Estimation in step-stress accelerated life tests for power generalized Weibull distribution with progressive censoring. Advances in Statistics, 2015, pp. 1–13.

M. NASSAR, A. Z. AFIFY, M. K. SHAKHATREH, S. DEY (2020). On a new extension of Weibull distribution: properties, estimation, and applications to one and two causes of failures. Quality and Reliability Engineering International, 36, pp. 2019–2043.

M. NASSAR, A. Z. AHMED, S. DEY, D. KUMAR (2018a). A new extension of Weibull distribution: properties and different methods of estimation. Journal of Computational and Applied Mathematics, 336, pp. 439–457.

M. NASSAR, S. DEY, D. KUMAR (2018b). A new generalization of the exponentiated Pareto distribution with an application. American Journal of Mathematical and Management Sciences, 37, pp. 217–242.

N. NIKULIN, F. HAGHIGHI (2006). A chi-squared test for the generalized power Weibull family for the head-and-neck cancer censored data. Journal of Mathematical Sciences, 133, pp. 1333–1341.

N. NIKULIN, F. HAGHIGHI (2009). On the power generalized Weibull family: model for cancer censored data. Metron, LXVII, pp. 75–86.

F. A. PENA-RAMIREZ, R. R. GUERRA, G. M. CORDEIRO, P. R. MARINHO (2018). The exponentiated power generalized Weibull, properties and applications. Anais da Academia Brasileira de Ciencias, 90, pp. 2553–2577.

A. RÉNYI (1961). On measures of entropy and information. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, I, pp. 547–561.

M. K. SHAKHATREH, S. DEY, D. KUMAR (2022). Inverse Lindley power series distributions: a new compounding family and regression model with censored data. Journal of Applied Statistics, 13, p. 3451–3476.

G. O. SILVA, M. M. E. ORTEGA, G. M. CORDEIRO (2010). The beta modified Weibull distribution. Lifetime Data Analysis, 16, pp. 409–430.

J. J. SWAIN, S. VENKATRAMAN, J. R. WILSON (1988). Least-squares estimation of distribution functions in Johnson’s translation system. Journal of Statistical Computation and Simulation, 29, pp. 271–297.

M. H. TAHIR, G. M. CORDEIRO, S. ALI, S. DEY, A. MANZOOR (2018). The inverted Nadarajah–Haghighi distribution: estimation methods and applications. Journal of Statistical Computation and Simulation, 88, p. 2775–2798.

M. TEIMOURI, S. M.HOSEINI, S.NADARAJAH (2013). Comparison of estimation methods for the Weibull distribution. Statistics, 47, pp. 93–109.

V. VOINOV, N. PYA, N. SHAPAKOV, Y. VOINOV (2013). Goodness-of-fit tests for the power-generalized Weibull probability distribution. Communications in Statistics-Simulation and Computation, 42, pp. 1003–1012.

W. A.WEIBULL (1951). Statistical distribution function of wide applicability. Journal of Applied Mechanics, 18, pp. 293–296.

X. YANG, L. WANG, M. YU, T. CHU, H. LI, J. CHAO, X. HAN (2022). Experimental study on the secondary breakup properties of crushed coal through a dynamic porosity model based on Weibull distribution theory. Fuel, 309, p. 122011.

## Downloads

## Published

## How to Cite

*Statistica*,

*82*(4), 339–372. https://doi.org/10.6092/issn.1973-2201/12924

## Issue

## Section

## License

Copyright (c) 2022 Statistica

This work is licensed under a Creative Commons Attribution 3.0 Unported License.