The Zografos-Balakrishnan Lindley Distribution: Properties and Applications
DOI:
https://doi.org/10.6092/issn.1973-2201/11101Keywords:
Lindley distribution, Hazard rate function, Stress strength reliability, Moments, Quantile function, Maximum likelihood estimation, SimulationAbstract
The Lindley distribution was proposed in the context of Bayesian statistics as a counter example of fiducial statistics. In this paper, we propose Zografos Balakrishnan Lindley (ZBL) distribution in which Lindley distribution is a special case. Some properties of the new distribution is obtained such as moments, hazard rate function, reliability function etc. The parameters are estimated using the method of maximum likelihood. Finally an application of the proposed distribution to a real data set is illustrated and it is concluded that Zogarfos Balakrishnan Lindley (ZBL) distribution provides better fit than other classical distributions.References
S. H. ALKARNI (2015). Extended inverse Lindley distribution: Properties and application. SpringerPlus, 4, no. 1, pp. 1–13.
M. G. BADER, A. M. PRIEST (1982). Statistical aspects of fibre and bundle strength in hybrid composites. Progress in Science and Engineering ofComposites, pp. 1129–1136.
G. M. CORDEIRO, E. M. M. ORTEGA, D. C. C. DA CUNHA (2013). The exponentiated generalized class of distributions. Journal of Data Science, 11, no. 1, pp. 1–27.
A. F. FAGBAMIGBE, P. MELAMU, B. O. OLUYEDE, B. MAKUBATE (2018). The Risti´c and Balakrishnan Lindley-Poisson distribution: Model, theory and application. Afrika Statistika, 13, no. 4, pp. 1837–1864.
M. E. GHITANY, D. K. AL-MUTAIRI, F. A. AL-AWADHI, M. M. AL-BURAIS (2012). Marshall-Olkin extended Lindley distribution and its application. International Journal of Applied Mathematics, 25, no. 5, pp. 709–721.
M. E. GHITANY, D. K. AL-MUTAIRI, N. BALAKRISHNAN, L. J. AL-ENEZI (2013). Power Lindley distribution and associated inference. Computational Statistics & Data Analysis, 64, pp. 20–33.
M. E. GHITANY, F. ALQALLAF, D. K. AL-MUTAIRI, H. A. HUSAIN (2011). A twoparameter weighted Lindley distribution and its applications to survival data. Mathematics and Computers in simulation, 81, no. 6, pp. 1190–1201.
M. E. GHITANY, B. ATIEH, S. NADARAJAH (2008). Lindley distribution and its application. Mathematics and Computers in Simulation, 78, no. 4, pp. 493–506.
E. GÓMEZ-DÉNIZ, E. CALDERÍN-OJEDA (2011). The discrete Lindley distribution: Properties and applications. Journal of Statistical Computation and Simulation, 81, no. 11, pp. 1405–1416.
I. S. GRADSHTEYN, I. M. RYZHIK (2014). Table of Integrals, Series, and Products. Academic Press, London.
G.HAMEDANI (2013). The Zografos-Balakrishnan log-logistic distribution: Properties and applications. Journal of Statistical Theory and Applications, 12, no. 3, pp. 225–244.
M. R. IRSHAD, R. MAYA (2017). Extended version of generalised Lindley distribution. South African Statistical Journal, 51, no. 1, pp. 19–44.
D. V. LINDLEY (1958). Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society: Series B, 20, no. 1, pp. 102–107.
R.MAYA, M. R. IRSHAD (2017). Generalized Stacy-Lindley mixture distribution. Afrika Statistika, 12, no. 3, pp. 1447–1465.
S. NADARAJAH, H. S. BAKOUCH, R. TAHMASBI (2011). A generalized Lindley distribution. Sankhya B, 73, no. 2, pp. 331–359.
S. NADARAJAH, G. M. CORDEIRO, E. M. M. ORTEGA (2015). The Zografos– Balakrishnan-G family of distributions: Mathematical properties and applications. Communications in Statistics-Theory and Methods, 44, no. 1, pp. 186–215.
M. SANKARAN (1970). The discrete Poisson-Lindley distribution. Biometrics, 26, no. 1, pp. 145–149.
V. K. SHARMA, S. K. SINGH, U. SINGH, F. MEROVCI (2016). The generalized inverse Lindley distribution: Anewinverse statistical model for the study of upside-down bathtub data. Communications in Statistics-Theory and Methods, 45, no. 19, pp. 5709–5729.
D. S. SHIBU, M. R. IRSHAD (2016). Extended new generalized Lindley distribution. Statistica, 76, no. 1, pp. 41–56.
H. ZAKERZADEH, A. DOLATI (2009). Generalized Lindley distribution. Journal of Mathematical Extension, 3, no. 2, pp. 13–25.
K. ZOGRAFOS,N. BALAKRISHNAN (2009). On families of beta-and generalized gammagenerated distributions and associated inference. Statistical methodology, 6, no. 4, pp. 344–362.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Statistica
This work is licensed under a Creative Commons Attribution 3.0 Unported License.