Su alcuni nuovi contributi alla teoria dei test secondo Neyman-Pearson
DOI:
https://doi.org/10.6092/issn.1973-2201/1109Abstract
Given two simple hypotheses H0:Teta=Teta0 and H1: Teta=Teta1 concerning the unknown parameter Teta which characterizes the probability distribution Fi(x;Teta) of a random variable X, it is well known that Neyman-Pearson lemma ensure the existence and the uniqueness of the most powerful test. In this paper, following Migliorati, it is demonstrated that the most powerful test is not unique whenever the probability distribution of X can be factored as Fi(x;Teta)= f(x)h(Teta). Besides, in this case there exists a perfect negative linear relationship between the probabilities of first and second type errors alfa e beta. Finally, it is shown that the theorem based on monotone likelihood ratio, which is considered a sort of generalization of Neyman-Pearson lemma, generates some "irregularities".How to Cite
Landenna, G. (1999). Su alcuni nuovi contributi alla teoria dei test secondo Neyman-Pearson. Statistica, 59(2), 153–169. https://doi.org/10.6092/issn.1973-2201/1109
Issue
Section
Articles
License
Copyright (c) 1999 Statistica
Copyrights and publishing rights of all the texts on this journal belong to the respective authors without restrictions.
This journal is licensed under a Creative Commons Attribution 4.0 International License (full legal code).
See also our Open Access Policy.