The Marshall-Olkin Gompertz Distribution: Properties and Applications
DOI:
https://doi.org/10.6092/issn.1973-2201/10993Keywords:
Bayesian analysis, Gompertz failure rate, Gompertz distribution, Gompertz mortality rate, Marshall-Olkin distribution, Regression analysis.Abstract
This article introduces three parameters class for lifetime Poisson processes in the Marshall-Olkin transformation family that are increasing, bathtub and skewed. Some structural mathematical properties of the Marshall-Olkin Gompertz (MO-G) model were derived. The MO-G model parameters were established by maximum likelihood approach. The flexibility, efficiency, and behavior of the MO-G model estimators were examined through simulation. The empirical applicability, flexibility and proficiency of the MO-G model was scrutinized by a real-life dataset. The proposed MO-G model provides a better fit when compared to existing models in statistical literature and can serve as an alternative model to those appearing in modeling Poisson processes.
References
T. ABOUELMAGD, S. AL-MUALIM, A. AFIFY, M. AHMAD, H. AL-MOFLEH (2018). The odd Lindley Burr xii distribution with applications. Pakistan Journal of Statistics, 34, no. 1, pp. 15–32.
M. ABRAMOWITZ, I. A. STEGUN (1965). Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables. Dover Publications Inc., New York.
M. H. ABUJARAD, A. A. KHAN, M. A. KHALEEL, E. S. ABUJARAD, A. H. ABUJARAD, P. E. OGUNTUNDE (2020). Bayesian reliability analysis of Marshall and Olkin model. Annals of Data Science, 7, no. 3, pp. 461–489.
A. Z. AFIFY, H. M. YOUSOF, G. M. CORDEIRO, E. M. M. ORTEGA, Z. M. NOFAL (2016). The Weibull Fréchet distribution and its applications. Journal of Applied Statistics, 43, no. 14, pp. 2608–2626.
M. ALIZADEH, M. RASEKHI, H. M. YOUSOF, G. G. HAMEDANI (2018a). The transmuted Weibull
Gfamily of distributions. Hacettepe Journal of Mathematics and Statistics, 47, no. 6, pp. 1–20.
M. ALIZADEH, H. M. YOUSOF, A. Z. AFIFY, G. M. CORDEIRO, M. MANSOOR (2018b). The complementary generalized transmuted Poisson-G family of distributions. Austrian Journal of Statistics, 47, pp. 51–71.
M. ALIZADEH, H. M. YOUSOF, S. M. JAHANSHAHIZ, S. M. NAJIBI, G. G. G. G. HAMEDANI (2020). The transmuted Odd Log-Logistic-G family of distributions. Journal of Statistics and Management systems, 23, no. 4, pp. 761–787.
A. ALZAATREH, C. LEE, F. FAMOYE (2013). A new method for generating families of continuous distributions. Metron, 71, pp. 63–79.
G. R. ARYAL, C. P. TSOKOS (2011). Transmuted Weibull distribution: A generalization of the Weibull probability distribution. European Journal of Pure and Applied Mathematics, 4, pp. 89–102.
A. M. BASHEER (2019). Alpha power inverse Weibull distribution with reliability application. Journal of Taibah University for Science, 13, no. 1, pp. 423–432.
L. BENKHELIFA (2016). TheMarshall-Olkin extended generalized Gompertz distribution. arXiv, 1603.08242v1.
B. M. BOURGUIGNON, R. SILVA, G. M. CORDEIRO (2014). The Weibull-G family of probability distributions. Journal of Data Science, 12, pp. 53–68.
G. M. CORDEIRO, A. Z. AFIFY, H. M. YOUSOF, R. R. PESCIM, G. R. ARYAL (2017). The exponentiatedWeibull-Hfamily of distributions: Theory and applications. Mediterranean Journal of Mathematics, 14, no. 55.
E. EFE-EYEFIA, J. T. EGHWERIDO, S. C. ZELIBE (2020). Weibull-Alpha power inverted exponential distribution: properties and applications. Gazi University Journal of Science, 33, no. 1, pp. 265–277.
J. EGHWERIDO (2021). The Alpha power Teissier distribution and its applications. Afrika Statistika, 16, no. 2, pp. 2731–2745.
J. EGHWERIDO, L.NZEI, I.DAVID, O. ADUBISI (2020a). The Gompertz extended generalized exponential distribution: properties and applications. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69, no. 1, pp. 739–753.
J. T. EGHWERIDO, F. I. AGU (2021). The shifted Gompertz-G family of distributions: properties and applications. Mathematica Slovaca, 71, no. 5, pp. 1291–1308.
J. T. EGHWERIDO, F. I. AGU, O. J. IBIDOJA (2021a). The shifted exponential-G family of distributions : Properties and applications. Journal of Statistics and Management Systems, pp. 1–33.
J. T. EGHWERIDO, I. J. DAVID, O. D. ADUBISI (2020b). Inverse odd Weibull generated family of distributions. Pakistan Journal of Statistics and Operation Research, 16, no. 3, pp. 617–633.
J. T. EGHWERIDO, L. C. NZEI, F. I. AGU (2021b). The Alpha power Gompertz distribution: characterization, properties, and applications. Sankhya A: The Indian Journal of Statistics, 83, no. 1, pp. 449–475.
J. T. EGHWERIDO, P. E. OGUNTUNDE, F. I. AGU (2021c). The Alpha power Marshall-Olkin-G distribution: Properties, and applications. Sankhya A: The Indian Journal of Statistics, in press, online version available at https://doi.org/10.1007/s13171-020-00235-y.
J. T. EGHWERIDO, S. C. ZELIBE, E. EFE-EYEFIA (2020c). Gompertz-Alpha power inverted exponential distribution: properties and applications. Thailand Statistician, 18, no. 3, pp. 319–332.
J. T. EGHWERIDO, S. C. ZELIBE, E. EKUMA-OKEREKE, E. EFE-EYEFIA (2020d). On the extented new generalized exponential distribution: properties and applications. FUPRE Journal of Scientific and Industrial Research, 3, no. 1, pp. 112–122.
B. GOMPERTZ (1824). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, 115, pp. 513–583.
D. C. T. GRANZOTTO, F. LOUZADA, N. BALAKRISHNAN (2017). Cubic rank transmuted distributions: inferential issues and applications. Journal of Statistical Computation and Simulation, 87, pp. 2760–2778.
M. S. KHAN, R. KING, I. HUDSON (2016a). Transmuted generalized Gompertz distribution with application. Journal of Statistical Theory and Applications, 16, no. 1, pp. 65–80.
M. S. KHAN, R. KING, I. HUDSON (2016b). Transmuted Gompertz distribution: application and estimation. Pakistian Journal Statistics, 32, no. 3, pp. 161–182.
N. KHAN, A. A. KHAN (2018). Bayesian analysis of Topp-Leone generalized exponential distribution. Austrian Journal of Statistics, 47, no. 4, pp. 1–15.
A. MAHDAVI, D. KUNDU (2017). A new method for generating distributions with an application to exponential distribution. Communications in Statistics - Theory and Methods, 46, no. 13, pp. 6543–6557.
M. R. MAHMOUD, R. M. MANDOUH (2013). On the transmuted Fréechét distribution. The Journal of Applied Sciences Research, 9, no. 21, pp. 5553–5561.
S. P. MANN (2016). Introductoty Statistics. JohnWiley & Sons Inc, New York.
A. W. MARSHALL, O. I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84, p. 641–652.
M. E. MEAD, G. M. CORDEIRO, A. AFIFY, H. AL-MOFLEH (2019). The Alpha power transformation family: properties and applications. Pakistan Journal of Statistics an Operation Research, 15, no. 3, pp. 525–545.
F. MEROVCI, M. ALIZADEH, H. M. YOUSOF, H. G. G. (2017). The exponentiated transmuted-G family of distributions: theory and applications. Communications in Statistics - Theory and Methods, 46, no. 21, pp. 10800–10822.
M.MILGRAM (1985). The generalized integro-exponential function. Mathematics of Computation, 44, no. 170, pp. 443–458.
M.NASSAR, A. ALZAATREH, A.MEAD, O. ABO-KASEM (2017). Alpha powerWeibull distribution: Properties and applications. Communications in Statistics - Theory and Methods, 46, no. 20, pp. 10236–10252.
J. NAVARRO, M. FRANCO, J. M. RUIZ (1998). Characterization through moments of the residual life and conditional spacing. Indian Journal of Statistics - Series A, 60, no. 1, pp. 36–48.
Z. M. NOFAL, A. Z. AFIFY, H. M. YOUSOF, G. M. CORDEIRO (2017). The generalized transmuted-G family of distributions. Communications in Statistics - Theory and Methods, 46, no. 8, pp. 4119–4136.
R CORE TEAM (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
M. M. RAHMAN, B. AL-ZAHRANI, M. Q. SHAHBAZ (2018). A general transmuted family of distributions. Pakistian Journal Statistics Operation Research, 14, no. 2, pp. 451–469.
R. L. SMITH, J. C. NAYLOR (1987). A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Applied Statistics, 36, pp. 258–369.
C. UNAL, S. CAKMAKYAPAN, G. OZEL (2018). Alpha power inverted exponential distribution: Properties and application. Gazi University Journal of Science, 31, no. 3, pp. 954–965.
H. M. YOUSOF, A. Z. AFIFY, M. ALIZADEH, N. S. BUTT, G. G. HAMEDANI, M. M. ALI (2015). The transmuted exponentiated generalized-G family of distributions. Pakistian Journal Statistics Operation Research, 11, no. 4, pp. 441–464.
H. M. YOUSOF, M. ALIZADEH, S. M. A. JAHANSHAHIAND, T. G. RAMIRES, I. GHOSH, H. G. G. (2017). The transmuted Topp-Leone G family of distributions: theory, characterizations and applications. Journal of Data Science, 15, pp. 723–740.
S. C. ZELIBE, J. T. EGHWERIDO, E. EFE-EYEFIA (2020). Kumaraswamy-Alpha power inverted exponential distribution: properties and applications. Istatistik Journal of the Turkish Statistical Association, 12, no. 1, pp. 35–48.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Statistica
This work is licensed under a Creative Commons Attribution 3.0 Unported License.