# Asymptotic Properties of the Semi-Parametric Estimators of the Conditional Density for Functional Data in the Single Index Model with Missing Data at Random

## DOI:

https://doi.org/10.6092/issn.1973-2201/10472## Keywords:

Ergodic processes, Functional data analysis, Functional single-index process, Missing at Random, Small Ball Probability## Abstract

The main objective of this work is to estimate, semi-parametrically, the mode of a conditional density when the response is a real valued random variable subject to censored phenomenon and the predictor takes values in a semi-metric space. We assume that the explanatory and the response variables are linked through a single-index structure. First, we introduce a type of kernel estimator of the conditional density function when the data are supposed to be selected from an underlying stationary and ergodic process with missing at random (MAR). Under some general conditions, both the uniform almost-complete consistencies with convergence rates of the model are established. Further, the asymptotic normality of the considered model is given. As an application, the asymptotic (1−α) confidence interval of the conditional density function and the conditional mode are also presented for 0 < α < 1.

## References

A. AIT SAÏDI, F. FERRATY, R. KASSA, P. VIEU (2008). Cross-validated estimations in the single-functional index model. Statistics, 42, no. 6, pp. 475–494.

S. ATTAOUI (2014). On the nonparametric conditional density and mode estimates in the single functional index model with strongly mixing data. Sankhya A, 76, no. 2, pp. 356–378.

S. ATTAOUI, A. LAKSACI, E. OULD-SAÏD (2011). A note on the conditional density estimate in the single functional index model. Statistics&Probability Letters, 81, no. 1, pp. 45–53.

A. A. BOUCHENTOUF, T. DJEBBOURI, A.RABHI, K. SABRI (2014). Strong uniform consistency rates of some characteristics of the conditional distribution estimator in the functional single-index model. Applicationes Mathematicae, 41, no. 4, pp. 301–322.

H. CARDOT, C. CRAMBES, P. SARDA (2004). Estimation spline de quantiles conditionnels pour variables explicatives fonctionnelles. Comptes Rendus. Mathématique. Académie des Sciences, Paris, 339, no. 2, pp. 141–144.

M. CHAOUCH, S. KHARDANI (2015). Randomly censored quantile regression estimation using functional stationary ergodic data. Journal ofNonparametric Statistics, 27, no. 1,pp. 65–87.

P. CHAUDHURI, K. DOKSUM, A. SAMAROV (1997). On average derivative quantile regression. The Annals of Statistics, 25, no. 2, pp. 715–744.

P. E. CHENG (1994). Nonparametric estimation of mean functionals with data missing at random. Journal of the American Statistical Association, 89, no. 425, pp. 81–87.

S. EFROMOVICH (2011a). Nonparametric regression with responses missing at random. Journal of Statistical Planning and Inference, 141, no. 12, pp. 3744–3752.

S. EFROMOVICH (2011b). Nonparametric regression with predictors missing at random. Journal of the American Statistical Association, 106, pp. 306–319.

M. EZZAHRIOUI, E. OULD SAÏD (2010). Some asymptotic results of a non-parametric conditional mode estimator for functional time-series data. Statistica Neerlandica, 64, no. 2, pp. 171–201.

F. FERRATY, A. LAKSACI, P. VIEU (2005). Functional time series prediction via conditional mode estimation. Comptes Rendus. Mathématique. Académie des Sciences, Paris, 340, no. 5, pp. 389–392.

F. FERRATY, A. LAKSACI, P. VIEU (2006). Estimating some characteristics of the conditional distribution in nonparametric functional models. Statistical Inference for Stochastic Processes, 9, no. 1, pp. 47–76.

F. FERRATY, A. PEUCH, P. VIEU (2003). Modèle à indice fonctionnel simple. (single functional index model). Comptes Rendus. Mathématique. Académie des Sciences, Paris, 336, no. 12, pp. 1025–1028.

F. FERRATY, M. SUED, P. VIEU (2013). Mean estimation with data missing at random for functional covariables. Statistics, 47, no. 4, pp. 688–706.

F. FERRATY, P. VIEU (2003). Curves discrimination: a nonparametric functional approach. Computational Statistics and Data Analysis, 44, no. 1-2, pp. 161–173.

F. FERRATY, P. VIEU (2006). Nonparametric functional data analysis. Theory and practice. Springer Series in Statistics, New York.

P.HALL, C. C.HEYDE (1980). Martingale Limit Theory and its Application. Probability and Mathematical Statistics: ASeries of Monographs and Textbooks,Academic Press, New York.

W. HÄRDLE, J. S. MARRON (1985). Optimal bandwidth selection in nonparametric regression function estimation. The Annals of Statistics, 13, pp. 1465–1481.

M. HRISTACHE, A. JUDITSKY, V. SPOKOINY (2001). Direct estimation of the index coefficient in a single-index model. The Annals of Statistics, 29, no. 3, pp. 595–623.

S. KHARDANI, M. LEMDANI, E. OULD SAÏD (2010). Some asymptotic properties for a smooth kernel estimator of the conditional mode under random censorship. Journal of the Korean Statistical Society, 39, no. 4, pp. 455–469.

S. KHARDANI, M. LEMDANI, E. OULD SAÏD (2011). Uniform rate of strong consistency for a smooth kernel estimator of the conditional mode for censored time series. Journal of Statistical Planning and Inference, 141, no. 11, pp. 3426–3436.

S. KHARDANI, M. LEMDANI, E. OULD SAÏD (2012). On the strong uniform consistency of the mode estimator for censored time series. Metrika, 75, no. 2, pp. 229–241.

N. LAIB, D. LOUANI (2010). Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties. Journal of Multivariate Analysis, 101, no. 10, pp. 2266–2281.

N. LAIB, D. LOUANI (2011). Rates of strong consistencies of the regression function estimator for functional stationary ergodic data. Journal of Statistical Planning and Inference, 141, no. 1, pp. 359–372.

M. LEMDANI, E. OULD SAÏD, N. POULIN (2009). symptotic properties of a conditional quantile estimator with randomly truncated data. Journal of Multivariate Analysis, 100, no. 3, pp. 546–559.

H. LIANG, J. DE UÑA ÁLVAREZ (2010). Asymptotic normality for estimator of conditional mode under left-truncated and dependent observations. Metrika, 72, no. 1, pp. 1–19.

H. LIANG, S. WANG, R. J. CARROLL (2007). Partially linear models with missing response variables and error-prone covariates. Biometrika, 94, no. 1, pp. 185–198.

N. LING, L. LIANG, P. VIEU (2015). Nonparametric regression estimation for functional stationary ergodic data with missing at random. Journal of Statistical Planning and Inference, 162, pp. 75–87.

N. LING, Y. LIU, P. VIEU (2016). Conditional mode estimation for functional stationary ergodic data with responses missing at random. Statistics, 50, no. 5, pp. 991–1013.

R. J. A. LITTLE, D. B. RUBIN (2002). Statistical analysis with missing data. Chichester: JohnWiley Series in Probability and Statistics, New York.

T. NITTNER (2003). Missing at random (mar) in nonparametric regression a simulation experiment. Statistical Methods and Applications, 12, no. 2, pp. 195–210.

E.OULD SAÏD, Z. CAI (2005). Strong uniformconsistency of nonparametric estimation of the censored conditional mode function. Journal ofNonparametric Statistics, 17, no. 7, pp. 797–806.

E. OULD SAÏD, Y. DJABRANE (2011). Asymptotic normality of a kernel conditional quantile estimator under strong mixing hypothesis and left-truncation. Communications in Statistics. Theory and Methods, 40, no. 14, pp. 2605–2627.

A. TATACHAK, E. OULD SAÏD (2011). A nonparametric conditional mode estimate under rlt model and strong mixing condition. International Journal of Statistics and Economics, 6, pp. 76–92.

A. A. TSIATIS (2006). Semiparametric theory and missing data. Springer Series in Statistics, New York, NY: Springer.

## Downloads

## Published

## How to Cite

*Statistica*,

*81*(4), 399–422. https://doi.org/10.6092/issn.1973-2201/10472

## Issue

## Section

## License

Copyright (c) 2021 Statistica

This work is licensed under a Creative Commons Attribution 3.0 Unported License.