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1. INTRODUCTION

In reliability theory, inferences of stress-strength reliability R = P (Y < X ), where, X
and Y have independent distributions, is a general problem of interest. For example,
in mechanical reliability of a system, if X is the strength of a component which is sub-
ject to stress Y , then R is a measure of system performance. The system fails, if at
any time the applied stress exceeds than its strength. The model of stress-strength has
found applications in many statistical problems, including quality control, engineering
statistics, medical statistics and biostatistics, among others. The problem of the estima-
tion of stress-strength model has received considerable attention in the statistical liter-
ature. In connection of classical Mann-Whitney statistic, Birnbaum (1956) introduced
stress-strength model. Since then, a lot of work has been done on the estimation of
stress-strength model for different distributions from the both frequentist and Bayesian
approaches in complete sample case. An excellent monograph by Kotz et al. (2003) pro-
vides a comprehensive treatment of different stress-strength models. Some recent works
on stress-strength model can be found in Kundu and Gupta (2006), Rezaei et al. (2010),
Babayi et al. (2014), Sharma (2018), etc.

Most of the inferences for stress-strength model have been carried out under com-
plete sample case and very little work has been done based on censored data. Specially,
stress-strength model is unexplored based on hybrid censored data. For example, Lio
and Tsai (2012) studied estimation of stress-strength parameter for Burr XII distribution
based on progressively first failure censored samples, Kumar et al. (2015) discussed esti-
mation of the stress-strength parameter for Lindley distribution using progressively first
failure censoring. Asgharzadeh et al. (2017) studied estimation for Weibull distribution
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based on hybrid censored samples. Some recent work on stress-strength model under
different scenario like record, progressive Type-II and progressive first failure censoring
schemes are carried out by many scholars like, Krishna et al. (2017), Yadav et al. (2018),
Chaudhary and Tomer (2018), Kohansal and Nadarajah (2019), Krishna et al. (2019),
Khan and Khatoon (2019), Saini et al. (2021), Kazemi and Kohansal (2021), and many
others.

In life testing experiments experimenter often does not have complete control on the
experiment in hand and items put on test are often lost or removed from the experiment
before the completion of the experiment. In this case available data are censored. In lit-
erature the most common censoring schemes are Type-I and Type-II censoring schemes
which are popularly used in life testing experiments. In Type-I censoring scheme the
experiment is terminated after a pre-fixed time and in Type-II censoring scheme exper-
iment is terminated after getting a pre-specified number of failures. A new censoring
scheme was introduced by Epstein (1954) which is the mixture of Type-I and Type-II
censoring schemes and called it hybrid censoring scheme. In recent years, the hybrid
censoring scheme has received considerable attention in the reliability theory and life
testing experiments. Some early work on hybrid censoring can be found in Draper and
Guttman (1987), Chen and Bhattacharyya (1988) etc. Several interesting results on hy-
brid censoring can be found in a review work by Balakrishnan and Kundu (2013). Some
recent studies on estimation and prediction problems with hybrid censoring scheme can
be found in Dey and Pradhan (2014), Tripathi and Rastogi (2016), Valiollahi et al. (2017),
Kayal et al. (2018), Sultana and Tripathi (2020) and references cited therein.

The hybrid censoring scheme can be described as follows: Let n identical units are
put on life testing experiment and their lifetimes are assumed to be independently and
identically distributed (iid) random variables with probability density function (pdf)
fX (x) and cumulative distribution function (cdf) FX (x) .

Let X1:n < X2:n < ... < Xr :n < ... < Xn:n denote the ordered lifetimes of the ex-
perimental units. The test is terminated when a pre-specified number r out of n units
have failed or a pre-specified time T has been reached. It is also assumed that the failed
items are not replaced. In hybrid censoring scheme, the experiment is terminated at
min (Xr :n ,T ) . Thus, under hybrid censoring scheme available data may be in one of
the following forms:

Case I x1:n , x2:n , ..., xr :n , if xr :n ≤ T ;

Case II x1:n , x2:n , ..., xm:n , if 0≤ m < r, xm:n < T < xm+1:n ,

where, m denotes the number of observed failures that occur before the time point T .
Note that xm+1:n , xm+2:n , ..., xr :n are not observed in case II. On combining both of the
cases, the likelihood function for hybrid censored sample, is given by

L(x1:n , x2:n , ..., xd :n) =A
d
∏

i=1

fX (xi :n){1− FX (c)}
n−d , (1)
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where, A= n(n− 1)(n− 2)...(n− d + 1), c = mi n(xr :n ,T ) and d =
∑r

i=1 I {xi :n ≤ c},
here, I is an indicator function.

The pdf and the cdf of the generalized inverted exponential distribution (GIED),
respectively, are given by

fX (x) =
αλ

x2
e−

λ
x (1− e−

λ
x )α−1; x > 0, (2)

FX (x) = 1− (1− e−
λ
x )α; x > 0. (3)

where, α > 0 and λ > are the shape and scale parameters, respectively. Abouammoh and
Alshingiti (2009) introduced GIED as a generalization of inverted exponential distribu-
tion. They studied many of its distributional properties and reliability characteristics.
Krishna and Kumar (2013) discussed reliability estimation in GIED with progressively
type II censored sample. They observed that the GIED is a better lifetime model than
exponential, inverted exponential, gamma and Weibull distributions in many practical
situations. Dey and Pradhan (2014), Tripathi and Rastogi (2016) studied GIED under
hybrid censoring. Genç (2017) studied truncated GIED and its properties. Dube et al.
(2016) discussed progressively first failure GIED. Garg et al. (2016) studied randomly
censored GIED. Krishna et al. (2017) studied stress-strength reliability for GIED based
on progressively first failure censored data. Wang et al. (2020) obtained inference for
confidence sets of GIED under k−record values. Mahmoud et al. (2021) studied GIED
under progressive type- I censoring scheme in presence of competing risks model, and
many other. Practically, GIED has several applications in queuing theory, accelerated
life testing, horse racing, supermarket queues, sea currents, wind speeds, and others.
These studies suggest that GIED is a widely applicable lifetime model.

This article considers the problem of point and interval estimation of the stress-
strength reliability R = P (Y < X ) under the assumption that X and Y both are inde-
pendent generalized inverted exponential random variables based on hybrid censored
data. Let X ∼GIED(α,λ) and Y ∼GIED(β,λ) be independent random variables, the
stress-strength reliability is given by

R= P (Y <X ) =
∫ ∞

0
FY (x) fX (x)d x =

β

(α+β)
. (4)

REMARK 1. (i) R is independent of λ, and (ii) when α=β, R= 0.5, i.e.,in this case X
and Y are iid and there is an equal chance that Y is smaller than X .

The rest of the paper is organized as follows: In Section 2, the maximum likelihood
estimator of stress-strength reliability is derived. Section 3 deals with the asymptotic
and two parametric bootstrap confidence intervals. Bayes estimator of the parameter is
presented in section 4. Also, highest posterior density (HPD) credible interval of is con-
structed using Markov Chain Monte Carlo (MCMC) approach. In section 5, a Monte
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Carlo simulation study is performed to compare different estimation procedures and
various hybrid censoring schemes. Section 6 deals with real data analysis for illustration
purposes. Finally, conclusions and a brief discussion on the paper are given in Section
7.

2. MAXIMUM LIKELIHOOD ESTIMATION

Let (x1, x2, . . . , xd1
) = (x1:n1

, x2:n1
, . . . , xd1:n1

) be a hybrid censored sample of size d1 from
GIED(α,λ) with censoring scheme (r1,T1) and (y1, y2, . . . , yd2

) = (y1:n2
, y2:n2

, . . . , yd2:n2
)

be a independent hybrid censored sample of size d2 from GIED(β,λ) with censoring
scheme (r2,T2). Then the likelihood function without constant terms is given by

L(dat a,α,β,λ)∝ αd1βd2λd1+d2

d1
∏

i=1

1
x2

i

d2
∏

j=1

1
y2

j

e
−λ
�

∑d1
i=1

1
xi
+
∑d2

j=1
1

y j

�

d1
∏

i=1

�

1− e−
λ
xi

�α−1 d2
∏

j=1

�

1− e
− λy j

�β−1

�

1− e−
λ
c1

�α(n1−d1) �

1− e−
λ
c2

�β(n2−d2)
, (5)

where ck = mi n(rk ,Tk ), dk =
∑rk

i=1 I {xi :n≤ck
}and k = 1,2. Since, MLEs do not exist

for d1 = d2 = 0, therefore d1 and d2 both are assumed greater than zero. Therefore, the
log likelihood function becomes

l (α,β,λ) = d1 logα+ d2 logβ+(d1+ d2) logλ− 2S1− 2S2−λ(S3+ S4)

+(α− 1)
d1
∑

i=1

log(1− e−
λ
xi )+ (β− 1)

d2
∑

j=1

log(1− e
− λy j )

+α(n1− d1) log(1− e−
λ
c1 )+β(n2− d2) log(1− e−

λ
c2 ), (6)

where S1 = 2
∑d1

i=1 log xi , S2 = 2
∑d2

j=1 log y j , S3 =
∑d1

i=1
1
xi

and S4 =
∑d2

j=1
1
y j

. MLEs α̂,

β̂ and λ̂ of the parameters α, β and λ, respectively, are the solutions of the following
non-linear equations:

∂ l
∂ α
=

d1

α
+

d=1
∑

i=1

log(1− e−
λ
xi )+ (n1− d1) log(1− e−

λ
c1 ) = 0; (7)

∂ l
∂ β
=

d2

β
+

d=2
∑

j=1

log(1− e
− λy j )+ (n2− d2) log(1− e−

λ
c2 ) = 0; (8)



Stress-Strength Reliability Estimation in GIED 339

∂ l
∂ λ
=

d1+ d2

λ
− (S3+ S4)+ (α− 1)

d1
∑

i=1

e−
λ
xi

xi (1− e−
λ
xi )
+ (β− 1)

d2
∑

j=1

e
− λy j

y j (1− e
− λy j )

+
α(n1− d1)e

− λc1

c1(1− e−
λ
c1 )
+
β(n2− d2)e

− λc2

c2(1− e−
λ
c2 )

= 0. (9)

From equations (7) and (8) we obtain

α̂(λ) =−d1

�

d=1
∑

i=1

log(1− e−
λ
xi )+ (n1− d1) log(1− e−

λ
c1 )
�−1

(10)

and

β̂(λ) =−d2





d=2
∑

j=1

log(1− e
− λy j )+ (n2− d2) log(1− e−

λ
c2 )





−1

. (11)

The parameter λ can be estimated by maximizing the profile log-likelihood function

l
�

α̂(λ), β̂(λ), λ
�

with respect to λ. Now, substituting α̂(λ) and β̂(λ) in in equation (9),

λ̂ can be obtained as a solution of the following non-linear equation:

λ= h(λ), (12)

where,

h(λ) = (d1+ d2)
�

(S3+ S4)− (α̂(λ)− 1)
d1
∑

i=1

e−
λ
xi

xi (1− e−
λ
xi )
− (β̂(λ)− 1)

×
d2
∑

j=1

e
− λy j

y j (1− e
− λy j )
−
α̂(λ)(n1− d1)e

− λc1

c1(1− e−
λ
c1 )
−
β̂(λ)(n2− d2)e

− λc2

c2(1− e−
λ
c2 )

�−1

.

A simple iterative procedure can be considered to solve equation (12). Start with an
initial value of λ, say λ(0), and obtain λ(1) from h(λ(0)), λ(2) from h(λ(1)), ...,λ(l+1) from
h(λ(l )). Stop the process when |λ(l+1) − λ(l )| < ε is satisfied, where, ε is a pre-specified
tolerance limit. Once we obtain MLE λ̂ of λ then MLEs of α and β can be deduced
from (10) and (11) as α̂ = α̂(λ̂) and β = β̂(λ̂) , respectively. Therefore, the MLE of R
can be obtained using invariance property of MLEs as

R̂=
β̂

�

α̂+ β̂
� . (13)



340 R. Garg and K. Kumar

3. DIFFERENT CONFIDENCE INTERVALS

In this Section, asymptotic confidence interval of R is constructed based on the asymp-
totic distribution of R̂. Also,the use of two parametric bootstrap confidence intervals
of R are proposed.

3.1. Asymptotic confidence interval

In this subsection, we derive the asymptotic confidence interval of R based on the ap-
proximate asymptotic variance-covariance matrix, which is given by

I−1(α̂, β̂, λ̂) =









− ∂
2 l
∂ α2 − ∂ 2 l

∂ α∂ β −
∂ 2 l
∂ α∂ λ

− ∂ 2 l
∂ β∂ α − ∂

2 l
∂ β2 − ∂ 2 l

∂ β∂ λ

− ∂ 2 l
∂ λ∂ α −

∂ 2 l
∂ λ∂ β − ∂

2 l
∂ λ2









−1

(α,β,λ)=(α̂,β̂,λ̂)

,

where
∂ 2 l
∂ α2

=−
d1

α2
,
∂ 2 l
∂ α∂ β

=
∂ 2 l
∂ β∂ α

= 0,
∂ 2 l
∂ β2

=−
d2

β2
,

∂ 2 l
∂ α∂ λ

=
∂ 2 l
∂ λ∂ α

=
d1
∑

i=1

e−
λ
xi

xi (1− e−
λ
xi )
+
(n1− d1)e

− λc1

c1(1− e−
λ
c1 )

,

∂ 2 l
∂ β∂ λ

=
∂ 2 l
∂ λ∂ β

=
d2
∑

j=1

e
− λy j

y j (1− e
− λy j )

+
(n2− d2)e

− λc2

c2(1− e−
λ
c2 )

,

∂ 2 l
∂ λ2

=−
(d1+ d2)
λ2
− (α− 1)

d1
∑

i=1

e−
λ
xi

x2
i (1− e−

λ
xi )2
− (β− 1)

d2
∑

j=1

e
− λy j

y2
j (1− e

− λy j )2

α(n1− d1)e
− λc1

c2
1 (1− e−

λ
c1 )2

+
β(n2− d2)e

− λc2

c2
2 (1− e−

λ
c2 )2

.

Now, we find the approximate estimate of the variance of R̂, using the delta method,

see, Greene (2003). Let define G =
�

∂ R
∂ α

∂ R
∂ β

∂ R
∂ λ

�T
= 1
(α+β)2 (−β α 0)T . Thus, an ap-

proximate estimate of Var(R̂) is given by

V̂ar(R̂) =
�

GI−1GT �

(α,β,λ)=(α̂,β̂,λ̂)
.



Stress-Strength Reliability Estimation in GIED 341

Now, using the asymptotic normality property of MLEs, the MLE R̂ is asymptoti-
cally normal distributed with mean R and variance V̂ar(R̂). Therefore, the asymptotic
(1− γ )% confidence interval for R is given by

�

R̂− zγ/2
q

V̂ar(R̂), R̂+ zγ/2
q

V̂ar(R̂)
�

, (14)

where zγ/2 is the upper γ/2 quantile of the standard normal distribution.
Since, 0 < R < 1, a better confidence interval may be obtained using transformed

confidence interval. Here, we use the logit transformation for the confidence interval
estimation as suggested by Krishnamoorthy and Lin (2010). Let θ̂ = ln(R̂/(1− R̂)) be
the MLE of θ = ln(R/(1−R)), using the asymptotic normality property of MLEs and
the delta method, the asymptotic (1−γ )% confidence interval for θ is given by (θL,θU ),

where, θL = ln
�

R̂

1−R̂

�

− zγ/2

p
V̂ar(R̂)

R̂(1−R̂)
and θU = ln

�

R̂

1−R̂

�

+ zγ/2

p
V̂ar(R̂)

R̂(1−R̂)
. Thus, the two

sided equal tail asymptotic 100(1− γ )% confidence interval for R is obtained as
�

exp(θL)
1+ exp(θL)

,
exp(θU )

1+ exp(θU )

�

. (15)

3.2. Bootstrap confidence intervals

Here, we propose the use of two parametric bootstrap confidence intervals. The two
bootstrap methods that are widely used in practice are (i) the percentile bootstrap (boot-
p) method proposed by Efron (1982), and (ii) the bootstrap-t (boot-t) method proposed
by Hall (1988). The boot-t confidence interval is developed based on a Studentized
‘pivot’ and requires an estimator of the variance of the MLE of R . We use the follow-
ing algorithms for two parametric bootstrap confidence intervals for the stress-strength
reliability R.

Boot-p method.

Step 1. Generate a hybrid censored sample
˜
x = (x1, x2, . . . , xd1

) with pre-fixed censor-
ing scheme (r1,T1) of size d1 from GIED(α,λ) and generate another hybrid cen-
sored sample

˜
y = (y1, y2, . . . , yd2

) with censoring scheme (r2,T2) of size d2 from

GIED(β,λ). Compute the MLEs α̂, β̂, λ̂ of the parameters α,β,λ .

Step 2. Generate a bootstrap sample
˜
x∗ = (x∗1 , x∗2 , . . . , x∗d1

) with pre-fixed censoring

scheme (r1,T1) of size d1 from GIED(α̂, λ̂) and generate a bootstrap sample

˜
y∗ = (y∗1 , y∗2 , . . . , y∗d2

) with censoring scheme (r2,T2) of size d2 from GIED(β̂, λ̂).

Compute the MLEs R̂∗ of R using equation (13).
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Step 3. Repeat step 2, NBOOT times.

Step 4. Let G(x) = P (R∗ ≤ x) be the cdf of R̂∗. Define R̂BP (x) =G−1(x) for a given x.
Now, the approximate 100(1− γ )% boot-p confidence interval of R is given by

�

R̂BP (γ/2), R̂BP (1− γ/2)
�

.

Boot-t method.

Step 1. Same as in boot-p method.

Step 2. Same as in boot-p method.

Step 3. Compute the following statistic T ∗ =
p

d1(R̂
∗− R̂)/

Æ

V̂ar(R̂∗). Compute
V̂ar(R̂∗) = B̂∗/d1 as in theorem 3.2 in Section 3.1.

Step 4. Repeat steps 2 and 3, NBOOT times.

Step 5. Let H (x) = P (T ∗ < x) be the cdf of T ∗. Define R̂B t (x) = R̂+H−1(x)
r

V̂ar(R̂)
d1

for a given x. The approximate 100(1− γ )% boot-t confidence interval of R is
given by

�

R̂B t (γ/2), R̂B t (1− γ/2)
�

.

4. BAYESIAN ESTIMATION

In this Section, we derive the Bayes estimator of R under the assumption that the shape
parameters α,β and scale parameter λ are random variables. It is quite natural to assume
independent gamma priors of the shape and scale parameters having, respective, pdfs

g1(α) =
b a1

1

Γ (a1)
αa1−1e−b1α ;α, a1, b1 > 0,

g2(β) =
b a2

2

Γ (a2)
βa2−1e−b2β ;β, a2, b2 > 0,

g3(λ) =
b a3

3

Γ (a3)
λa3−1e−b3λ ;λ, a3, b3 > 0, respectively.

where, (a1, b1), (a2, b2) and (a3, b3) are known hyper-parameters and chosen to reflect
prior knowledge about unknown parameters α, β and λ, respectively. The choice of
gamma priors is due to their flexibilities. They accommodate a variety of shapes de-
pending on hyper-parameters. In literature, many authors have been used gamma priors
for parameters of GIED, see, Dey and Pradhan (2014), Dube et al. (2016), etc. Also, it is
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noted that when ai = bi = 0.0001; i = 1,2,3 the gamma priors become non-informative
priors. Moreover, it is assumed that α,β and λ are a-priori independent. The joint prior
distribution of α, β and λ can be written as

g (α,β,λ)∝ αa1−1βa2−1λa3−1e−(b1α+b2β+b3λ), (16)

and

π(α,β,λ|data) =
L(data|α,β,λ)g (α,β,λ)

∞
∫

0

∞
∫

0

∞
∫

0
L(data|α,β,λ)g (α,β,λ)dαdβdλ

,

π(α,β,λ|data) = αd1+a1−1βd2+a2−1λd1+d2+a3−1e−λ(b3+S3+S4)e−(b1α+b2β)

e (α−1)
∑d1

i=1 ln(1−e
− λxi )eα(n1−d1)

∑d1
i=1 ln(1−e−

λ
c1 )e (β−1)

∑d2
j=1 ln(1−e

− λy j )

eβ(n2−d2)
∑d2

j=1 ln(1−e−
λ
c2 ).

(17)

Since, the above posterior distribution cannot be obtained analytically, we adopt Lind-
ley’s approximation method and MCMC techniques to compute Bayes estimate and the
corresponding HPD credible interval of R .

4.1. Lindley’s approximation method

The Lindley approximation method to approximate the ratio of two integrals was pro-
posed by Lindley (1980). According to this method the approximate Bayes estimator of
R under squared error loss function (SELF) is given by

R̂LB = R̂+
1
2

�

�

R̂11+ 2R̂1ρ̂1

�

σ̂11+
�

R̂12+ 2R̂1ρ̂2

�

σ̂12+
�

R̂21+ 2R̂2ρ̂1

�

σ̂21

+
�

R̂22+ 2R̂2ρ̂2

�

σ̂22+
�

R̂11σ̂11+ R̂2σ̂12

�

�

l̂30σ̂11+ 2 l̂21σ̂12+ l̂12σ̂22

�

+
�

R̂1σ̂21+ R̂2σ̂22

�

�

l̂21σ̂11+ 2 l̂12σ̂21+ l̂03σ̂22

�
�

,

(18)

R1 =
∂ R
∂ α
=
−β

(α+β)2
, R11 =

∂ 2R
∂ α2

=
2β

(α+β)3
, R2 =

∂ R
∂ β
=

α

(α+β)2
,

R22 =
∂ 2R
∂ β2

= 0, R12 = R21 =
∂ 2R
∂ α∂ β

= 0, ρ1 =
∂ ρ

∂ α
=
�

(a1− 1)
α
− b1

�

,

ρ2 =
∂ ρ

∂ β
=
�

(a2− 1)
β
− b2

�

, l30 =
∂ 3 l
∂ α3

=
2d1

α3
, l12 =

∂ 3 l
∂ α∂ β2

= 0,
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l21 =
∂ 3 l
∂ α2∂ β

= 0, l03 =
∂ 3 l
∂ β3

=
2d2

β3

and σ̂i j = (i , j )-th element of the observed variance-covariance matrix I−1(θ̂). Thus, the
Bayes estimate of R under SELF is given by

R̂LB = R̂+
1
2

�

�

R̂11+ 2R̂1ρ̂1

�

σ̂11+
�

R̂12+ 2R̂1ρ̂2

�

σ̂12+
�

R̂21+ 2R̂2ρ̂1

�

σ̂21

+
�

R̂22+ 2R̂2ρ̂2

�

σ̂22+
�

R̂1σ̂
2
11+ R̂2σ̂11σ̂12

�

l̂30+
�

R̂1σ̂21σ̂22+ R̂2σ̂
2
22

�

l̂30

�

.
(19)

All the values at the right hand sides in (18) and (19) are to be computed at MLEs (α̂, β̂)
of (α,β). Although, using Lindley’s approximation methods, the Bayes estimates of the
unknown parameters can be obtained easily but we cannot construct the HPD credible
intervals. For this purpose we use MCMC method to compute Bayes estimate as well as
HPD credible interval of R.

4.2. MCMC Method

Gibbs sampler generates a sequence of samples from the full conditional probability
distributions. The Gibbs sampler can be efficient when the full conditional distributions
are easy to sample from. The Metropolis-Hastings (MH) algorithm can be used to obtain
random samples from any arbitrarily complicated target distribution of any dimension
that is known up to a normalizing constant. It was first developed by Metropolis et al.
(1953) and later extended by Hastings (1970). In fact, Gibbs sampler is a special case of
MH algorithm. The full posterior conditional distributions of α, β and λ respectively,
are obtained as

α|(λ, dat a)∼ fGA

 

(d1+ a1),

 

b1−
d1
∑

i=1

ln(1− e−
λ
xi )− (n1− d1) ln(1− e−

λ
c1 )

!!

, (20)

β|(λ, dat a)∼ fGA

 

(d2+ a2),

 

b2−
d2
∑

j=1

ln(1− e
− λy j )− (n2− d2) ln(1− e−

λ
c2 )

!!

(21)

and

π(λ|α,β,data)∝λd1+d2+a3−1e−λ(b3+S3+S4)e (α−1)
∑d1

i=1 ln(1−e
− λxi )

eα(n1−d1)
∑d1

i=1 ln(1−e−
λ
c1 )e (β−1)

∑d2
j=1 ln(1−e

− λy j )

eβ(n2−d2)
∑d2

j=1 ln(1−e−
λ
c2 ),

(22)
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where fGA(x;a, b ) = b a

Γ (a) x
a−1e−b x ; x, a, b > 0 is gamma distribution with shape and

scale parameters a and b , respectively. The posterior conditional distribution of λ is
not in a well known form and therefore random numbers from this distribution can be
generated by using MH algorithm. Here we consider normal distribution as proposal
density. Therefore, Gibbs sampling has following steps for simulation process:

Step 1. Start with an initial guess (α(0),β(0),λ(0)).

Step 2. Set k = 1.

Step 3. Generate λ(k) from πλ using MH algorithm with following steps:
(i) Generate a candidate point λ(k)c from the proposal density N (µ,σ2).
(ii) Generate u form U (0,1).

(iii) Calculate η
�

λ(k)c |λ(k−1)
�

= mi n
n

πλ(λ
(k)
c |data)

πλ(λ(k−1)|data) , 1
o

.

(iv) If µ≤ η set λ(k) = λ(k)c with acceptance probability η otherwise λ(k) = λ(k−1) .

Step 4. Generate α(k) from
fGA

�

(d1+ a1),
�

b1−
∑d1

i=1 ln(1− e−λ
(k)/xi )− (n1− d1)l n(1− e−λ

(k)/c1)
��

.

Step 5. Generate β(k) from
fGA

�

(d2+ a2),
�

b2−
∑d2

j=1 ln(1− e−λ
(k)/y j )− (n2− d2)l n(1− e−λ

(k)/c2)
��

.

Step 6. Compute R(k) = β(k)

(α(k)+β(k)) .

Step 7. Set k = k + 1.

Step 7. Repeat steps 3-7, M times.

The selection of appropriate initial values and the normal distribution as proposal den-
sity is an important issue in the MH algorithm. The rapid convergence is facilitated
by selecting appropriate initial values and proposal normal distributions. The MLEs
of parameters may be considered as the initial values in step 1. Here, µ = λ̂pos t and

σ2 = 5.8×Var(λ̂pos t ) from posterior (17), see, Ntzoufras (2009) (pp 44-45). Now, the
Bayes estimate of R under SELF is a posterior mean and is obtained as

R̂Baye s = E(R|data) =
1

M −M0

M
∑

k=M0+1

R(k), (23)

where, M0 is the burn-in-period i.e. we discard first R(1), R(2), . . . , R(M0) observations
and work with the remaining M1 = (M −M0) observations, which are viewed as being
an independent sample from the stationary distribution of the Markov chain which is
typically the posterior distribution.
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4.3. HPD credible interval

Once we have desired posterior sample, the HPD credible interval for R can be con-
structed by using the algorithm proposed by Chen and Shao (1999). Let
R1 ≤ R2 ≤ . . . ,≤ R(M−MO )

denote the ordered values of R(M0+1), R(M0+2), . . . , R(M−MO ),
the 100(1− γ )% HPD credible interval for R is given by

�

R(k), R(k+[1−γ ]M )
�

,

where k is chosen such that
�

Rk+[(1−γ )(M−M0)]
−R(k)

�

= mi n1≤ j≤γM

�

R j+[(1−γ )(M−M0)]
−R( j )

�

;

k = 1,2, . . . , (M −M0), [x] being the integer part of x.

5. MONTE CARLO SIMULATION STUDY

This Section deals with the Monte Carlo simulation study to compare the performance
of different estimation procedures under various hybrid censoring schemes. The ML
and Bayes estimates under SELF using gamma informative and non-informative priors
in terms of average estimate (AE) and mean squared errors (MSE) are compared. Also,
the asymptotic, two types of bootstrap confidence and HPD credible intervals using
informative as well as non-informative priors in terms of average lengths and coverage
probabilities are compared. Different parameter values, various censoring schemes and
different sample sizes are considered. In Bayes estimation, non-informative and infor-
mative priors are denoted by Prior 0 and Prior 1 , respectively. For non-informative
prior hyper-parameters are taken as ai = bi = 0.0001; i = 1,2,3 in (16). For Prior 1,
hyper-parameters are so chosen that prior means are exactly equal to the true values of
the parameters. Two sets of true values of parameters α = 1.5, β = 2, λ = 1 so that
R = 0.5714 with corresponding informative hyper-parameters a1 = 3, b1 = 2, a2 = 4,
b2 = 2, a3 = 2, b3 = 2 and α = 0.75, β = 3, λ = 1 so that R = 0.80 with corresponding
informative hyper-parameters a1 = 3, b1 = 4, a2 = 6, b2 = 2, a3 = 2, b3 = 2 are taken.
In ML estimation the tolerance limit ε= 10−6 is considered for iterative process. Also,
eight hybrid censoring schemes are considered and given in Table 1. The AEs and MSEs
of ML and Bayes estimators are obtained over 1,000 pairs of hybrid censored samples
generated from GIED. All calculations are performed on the statistical software R. The
average length of 95% asymptotic confidence interval based on logit scale, boot-p, boot-
t confidence and HPD credible intervals of stress-strength parameter R are obtained.
Here, NBOOT = 1,000 for bootstrap methods and M = 10,000 with burn-in-period
M0 = 2,000 for MCMC technique are considered.

The results of the Monte Carlo simulation study are presented in Tables 2, 3, 4 and
5, respectively. Tables 2 and 4 show that the MLE compares very well with the Bayes
estimator in terms of AEs and MSEs. On comparing the two Bayes estimators based on
informative and non-informative priors, it can be seen that the Bayes estimator based
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TABLE 1
Censoring schemes for Monte Carlo simulation study.

(n, r,T ) (30,20,1.5) (30,25,1.5) (30,20,2.5) (30,25,2.5) (50,30,2) (50,40,2) (50,30,3) (50,40,3)
CS S1 S2 S3 S4 S5 S6 S7 S8

TABLE 2
The AE and MSE of the ML and Bayes estimates of R when α= 1.5,β= 4.5,λ= 1 and R= 0.5714.

R̂Baye s

CS
R̂M LE

LB MCMC

Prior 0 Prior 1 Prior 0 Prior 1

AE MSE AE MSE AE MSE AE MSE AE MSE

(S1, S2) 0.5733 0.0068 0.5735 0.0073 0.5694 0.0042 0.5698 0.0057 0.5683 0.0042
(S1, S3) 0.5792 0.0070 0.5846 0.0083 0.5744 0.0044 0.5741 0.0057 0.5687 0.0042
(S1, S4) 0.5698 0.0062 0.5685 0.0068 0.5707 0.0042 0.5743 0.0054 0.5709 0.0040
(S2, S1) 0.5789 0.0064 0.5855 0.0075 0.5750 0.0044 0.5802 0.0058 0.5716 0.0042
(S2, S3) 0.5788 0.0065 0.5854 0.0076 0.5726 0.0061 0.5746 0.0051 0.5695 0.0041
(S2, S4) 0.5705 0.0055 0.5705 0.0058 0.5714 0.0038 0.5743 0.0051 0.5775 0.0040
(S3, S1) 0.5729 0.0068 0.5785 0.0081 0.5691 0.0040 0.5630 0.0058 0.5688 0.0042
(S3, S2) 0.5623 0.0058 0.5627 0.0063 0.5680 0.0041 0.5631 0.0053 0.5676 0.0042
(S3, S4) 0.5699 0.0058 0.5692 0.0065 0.5638 0.0041 0.5719 0.0046 0.5678 0.0036
(S4, S1) 0.5796 0.0066 0.5878 0.0077 0.5702 0.0036 0.5693 0.0054 0.5686 0.0041
(S4, S2) 0.5719 0.0055 0.5751 0.0058 0.5720 0.0040 0.5641 0.0051 0.5703 0.0038
(S4, S3) 0.5821 0.0062 0.5903 0.0074 0.5737 0.0038 0.5709 0.0052 0.5677 0.0041
(S5, S6) 0.5668 0.0038 0.5657 0.0041 0.5677 0.0032 0.5678 0.0038 0.5677 0.0027
(S5, S7) 0.5708 0.0043 0.5749 0.0048 0.5736 0.0033 0.5721 0.0036 0.5723 0.0029
(S5, S8) 0.5684 0.0038 0.5673 0.0041 0.5682 0.0029 0.5685 0.0035 0.5701 0.0027
(S6, S5) 0.5784 0.0039 0.5845 0.0044 0.5795 0.0033 0.5706 0.0034 0.5715 0.0028
(S6, S7) 0.5779 0.0040 0.5843 0.0046 0.5764 0.0028 0.5687 0.0029 0.5686 0.0027
(S6, S8) 0.5745 0.0033 0.5757 0.0035 0.5744 0.0027 0.5685 0.0036 0.5721 0.0025
(S7, S5) 0.5753 0.0046 0.5797 0.0052 0.5723 0.0033 0.5693 0.0036 0.5697 0.0033
(S7, S6) 0.5656 0.0037 0.5645 0.0040 0.5672 0.0029 0.5721 0.0031 0.5695 0.0028
(S7, S8) 0.5650 0.0039 0.5638 0.0042 0.5707 0.0031 0.5658 0.0035 0.5704 0.0028
(S8, S5) 0.5794 0.0039 0.5858 0.0044 0.5767 0.0029 0.5694 0.0028 0.5697 0.0028
(S8, S6) 0.5726 0.0034 0.5741 0.0036 0.5738 0.0027 0.5686 0.0032 0.5675 0.0024
(S8, S7) 0.5734 0.0037 0.5795 0.0041 0.5776 0.0029 0.5777 0.0030 0.5665 0.0027
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TABLE 3
The AL and CP of 95% asymptotic, bootstrap confidence/HPD credible intervals of R when

α= 1.5,β= 4.5,λ= 1 and R= 0.5714.

CS
R̂M LE R̂B p R̂B t

R̂Baye s

Prior 0 Prior 1

AL CP AL CP AL CP AL CP AL CP

(S1, S2) 0.2842 0.925 0.3086 0.923 0.3314 0.910 0.2862 0.938 0.2678 0.961
(S1, S3) 0.2931 0.934 0.3154 0.925 0.3458 0.908 0.2943 0.943 0.2736 0.964
(S1, S4) 0.2806 0.941 0.3028 0.914 0.3244 0.905 0.2805 0.938 0.2630 0.953
(S2, S1) 0.2916 0.938 0.3080 0.935 0.3385 0.923 0.2910 0.929 0.2713 0.961
(S2, S3) 0.2907 0.944 0.3041 0.928 0.3363 0.913 0.2923 0.943 0.2714 0.968
(S2, S4) 0.2772 0.955 0.2889 0.927 0.3135 0.915 0.2777 0.941 0.2595 0.959
(S3, S1) 0.2915 0.935 0.3158 0.926 0.3433 0.909 0.2924 0.933 0.2710 0.957
(S3, S2) 0.2836 0.946 0.3023 0.935 0.3250 0.922 0.2839 0.943 0.2640 0.947
(S3, S4) 0.2767 0.944 0.2965 0.928 0.3175 0.914 0.2772 0.955 0.2600 0.968
(S4, S1) 0.2830 0.930 0.3030 0.924 0.3295 0.902 0.2818 0.945 0.2618 0.962
(S4, S2) 0.2718 0.949 0.2886 0.926 0.3097 0.912 0.2732 0.942 0.2548 0.955
(S4, S3) 0.2823 0.937 0.2988 0.930 0.3267 0.915 0.2808 0.946 0.2615 0.950
(S5, S6) 0.2266 0.949 0.2378 0.937 0.2472 0.930 0.2410 0.948 0.2166 0.965
(S5, S7) 0.2418 0.942 0.2540 0.932 0.2680 0.922 0.2252 0.935 0.2284 0.962
(S5, S8) 0.2260 0.942 0.2369 0.951 0.2463 0.944 0.2302 0.943 0.2156 0.964
(S6, S5) 0.2333 0.951 0.2418 0.931 0.2558 0.922 0.2302 0.945 0.2189 0.948
(S6, S7) 0.2333 0.940 0.2420 0.940 0.2560 0.926 0.2135 0.955 0.2190 0.959
(S6, S8) 0.2135 0.941 0.2214 0.941 0.2308 0.931 0.2410 0.946 0.2047 0.958
(S7, S5) 0.2412 0.932 0.2538 0.939 0.2680 0.925 0.2257 0.929 0.2284 0.944
(S7, S6) 0.2267 0.947 0.2379 0.951 0.2473 0.942 0.2256 0.952 0.2161 0.953
(S7, S8) 0.2265 0.935 0.2367 0.945 0.2465 0.932 0.2278 0.943 0.2155 0.957
(S8, S5) 0.2316 0.947 0.2410 0.940 0.2541 0.925 0.2105 0.950 0.2163 0.956
(S8, S6) 0.2111 0.941 0.2206 0.942 0.2289 0.932 0.2277 0.954 0.2025 0.962
(S8, S7) 0.2320 0.950 0.2410 0.936 0.2539 0.928 0.2180 0.942 0.2165 0.953
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TABLE 4
The AE and MSE of the ML and Bayes estimates of R when α= 0.75,β= 3,λ= 1 and R= 0.80.

R̂Baye s

CS
R̂M LE

LB MCMC

Prior 0 Prior 1 Prior 0 Prior 1

AE MSE AE MSE AE MSE AE MSE AE MSE

(S1, S2) 0.8046 0.0032 0.8115 0.0035 0.8013 0.0020 0.7934 0.0032 0.7945 0.0020
(S1, S3) 0.8063 0.0038 0.8255 0.0054 0.8019 0.0024 0.7922 0.0032 0.7955 0.0021
(S1, S4) 0.8064 0.0030 0.8132 0.0034 0.8038 0.0019 0.7957 0.0027 0.7986 0.0020
(S2, S1) 0.8052 0.0039 0.8241 0.0055 0.8043 0.0022 0.7960 0.0031 0.7943 0.0022
(S2, S3) 0.8065 0.0035 0.8256 0.0050 0.8038 0.0022 0.7920 0.0033 0.7972 0.0020
(S2, S4) 0.8052 0.0032 0.8121 0.0036 0.8032 0.0017 0.7987 0.0031 0.7981 0.0020
(S3, S1) 0.8053 0.0033 0.8256 0.0048 0.8008 0.0022 0.7925 0.0029 0.7972 0.0019
(S3, S2) 0.8039 0.0030 0.8128 0.0034 0.7997 0.0018 0.7922 0.0025 0.7965 0.0018
(S3, S4) 0.8052 0.0029 0.8137 0.0034 0.8008 0.0018 0.7903 0.0027 0.7976 0.0017
(S4, S1) 0.8078 0.0034 0.8283 0.0050 0.8022 0.0022 0.7939 0.0029 0.7933 0.0018
(S4, S2) 0.8071 0.0030 0.8159 0.0035 0.8020 0.0015 0.7973 0.0025 0.7944 0.0017
(S4, S3) 0.8090 0.0033 0.8295 0.0050 0.8047 0.0020 0.7917 0.0027 0.7972 0.0018
(S5, S6) 0.8042 0.0020 0.8095 0.0023 0.8036 0.0012 0.7953 0.0017 0.7962 0.0013
(S5, S7) 0.8050 0.0024 0.8205 0.0032 0.8092 0.0015 0.7957 0.0019 0.7960 0.0013
(S5, S8) 0.8023 0.0019 0.8077 0.0021 0.8027 0.0014 0.7960 0.0016 0.7982 0.0013
(S6, S5) 0.8057 0.0023 0.8212 0.0031 0.8116 0.0015 0.7985 0.0018 0.7955 0.0015
(S6, S7) 0.8048 0.0024 0.8201 0.0033 0.8110 0.0014 0.7961 0.0018 0.7965 0.0015
(S6, S8) 0.8031 0.0018 0.8084 0.0020 0.8033 0.0013 0.7967 0.0016 0.7983 0.0012
(S7, S5) 0.8047 0.0023 0.8203 0.0031 0.8074 0.0013 0.7923 0.0017 0.7942 0.0013
(S7, S6) 0.8000 0.0019 0.8056 0.0021 0.8030 0.0014 0.7944 0.0016 0.7956 0.0013
(S7, S8) 0.8013 0.0020 0.8070 0.0022 0.8020 0.0014 0.7934 0.0016 0.7956 0.0013
(S8, S5) 0.8066 0.0019 0.8220 0.0028 0.8099 0.0012 0.7952 0.0016 0.7980 0.0012
(S8, S6) 0.8013 0.0017 0.8070 0.0019 0.8047 0.0011 0.7958 0.0014 0.7977 0.0011
(S8, S7) 0.8061 0.0022 0.8215 0.0031 0.8098 0.0014 0.7939 0.0017 0.7936 0.0013
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TABLE 5
The AL and CP of 95% asymptotic, bootstrap confidence/HPD credible intervals of R when

α= 0.75,β= 3,λ= 1 and R= 0.80.

CS
R̂M LE R̂B p R̂B t

R̂Baye s

Prior 0 Prior 1

AL CP AL CP AL CP AL CP AL CP

(S1, S2) 0.2155 0.955 0.2321 0.920 0.2653 0.870 0.2123 0.937 0.1920 0.968
(S1, S3) 0.2291 0.943 0.2201 0.960 0.2429 0.920 0.2223 0.946 0.1977 0.963
(S1, S4) 0.2144 0.951 0.2276 0.840 0.2642 0.780 0.2109 0.953 0.1895 0.958
(S2, S1) 0.2293 0.942 0.2237 0.930 0.2587 0.870 0.2203 0.942 0.1980 0.965
(S2, S3) 0.2292 0.944 0.2244 0.940 0.2581 0.830 0.2226 0.945 0.1966 0.965
(S2, S4) 0.2146 0.948 0.2076 0.940 0.2231 0.930 0.2092 0.933 0.1897 0.968
(S3, S1) 0.2206 0.949 0.2081 0.910 0.2286 0.880 0.2084 0.948 0.1845 0.957
(S3, S2) 0.2024 0.931 0.2042 0.950 0.2214 0.930 0.1979 0.946 0.1783 0.957
(S3, S4) 0.2013 0.939 0.2068 0.928 0.2362 0.887 0.1981 0.949 0.1775 0.966
(S4, S1) 0.2189 0.935 0.1746 0.900 0.1809 0.880 0.2071 0.931 0.1864 0.974
(S4, S2) 0.2005 0.934 0.1909 0.940 0.2049 0.920 0.1943 0.953 0.1789 0.966
(S4, S3) 0.2182 0.948 0.1859 0.900 0.2014 0.860 0.2082 0.946 0.1844 0.968
(S5, S6) 0.1629 0.939 0.1850 0.930 0.2019 0.870 0.1595 0.941 0.1495 0.957
(S5, S7) 0.1820 0.939 0.1825 0.929 0.2062 0.884 0.1706 0.953 0.1580 0.973
(S5, S8) 0.1639 0.939 0.1658 0.947 0.1797 0.912 0.1591 0.949 0.1488 0.955
(S6, S5) 0.1818 0.947 0.2198 0.920 0.2419 0.880 0.1691 0.946 0.1579 0.957
(S6, S7) 0.1822 0.935 0.2191 0.940 0.2446 0.930 0.1702 0.948 0.1573 0.951
(S6, S8) 0.1634 0.952 0.2143 0.936 0.2316 0.887 0.1584 0.953 0.1484 0.965
(S7, S5) 0.1801 0.944 0.1801 0.930 0.2022 0.890 0.1677 0.963 0.1544 0.966
(S7, S6) 0.1608 0.935 0.1649 0.925 0.1764 0.901 0.1542 0.951 0.1448 0.965
(S7, S8) 0.1602 0.942 0.1650 0.940 0.1766 0.911 0.1547 0.954 0.1448 0.958
(S8, S5) 0.1789 0.969 0.1769 0.935 0.2008 0.893 0.1646 0.958 0.1510 0.967
(S8, S6) 0.1590 0.942 0.1575 0.917 0.1721 0.888 0.1515 0.946 0.1422 0.958
(S8, S7) 0.1788 0.941 0.1760 0.924 0.2000 0.876 0.1650 0.956 0.1530 0.965
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on gamma informative priors outperforms based on non-informative priors in terms of
both AEs and MSEs. For both the ML and Bayes estimation procedures, as the effec-
tive sample size increases the AEs become close to their true values and MSEs decrease.
Again, as the true value of R increases AEs depart from their true values and the MSEs
decrease. Also, the Bayes estimate outperforms the MLE in terms of AEs and MSEs.
In general, the combination of censoring schemes S6 and S8 give best results in com-
parison to other censoring schemes in terms of AEs, MSEs, average length of different
confidence/credible intervals.

Tables 3 and 5 present the average confidence and credible lengths with correspond-
ing coverage probabilities. The nominal level for the confidence and the credible in-
tervals is 0.95 in each case. These Tables show that the average length of asymptotic,
bootstrap confidence and HPD credible intervals narrow down as effective sample sizes
increase. Also, the boot-t confidence intervals are wider than the asymptotic, boot-p
confidence and HPD credible intervals. The HPD credible intervals provide the small-
est average credible lengths for different censoring schemes and for different parameter
values. The asymptotic confidence interval based on MLE is the second best confidence
interval. Also, it is evident that the HPD credible intervals provide the highest coverage
probabilities in most cases considered.

Thus, the Bayesian estimation procedure is recommended when prior information
about parameters is available. For quick and easy results ML estimation procedure may
be considered.

6. REAL DATA ANALYSIS

In this Section, the analysis of a pair of real data sets is presented for illustrative purposes.
The strength measured in GPA for single carbon fibers and impregnated 1000-carbon
fiber tows are presented in Tables 6 and 7, respectively. Single fibers were tested under
tension at gauge lengths of 10 mm and 20 mm. These data sets were originally reported
by Bader and Priest (1982). These data sets have also been used by Kundu and Gupta
(2006) and many others.

TABLE 6
Data set 1 (X: gauge length 10 mm).

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445
2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618
2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937
2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243
3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501
3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027
4.225 4.395 5.020
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TABLE 7
Data set 2 (Y: gauge length 20 mm).

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958
1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179
2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382
2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554
2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726
2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012
3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585

TABLE 8
MLEs, K-S and A-D tests for real data sets assuming different scale parameters.

Data Set Shape Parameter Scale Parameter
K-S Test A-D Test

Statistic p-value Statistic p-value

Data Set 1 (X: gauge length 10 mm) 175.2867 16.811 0.086 0.7399 0.4213 0.8268
Data Set 2 (Y: gauge length 20 mm) 205.8832 13.8826 0.0414 0.9998 0.1939 0.992

First of all, the GIED is fitted to the two data sets separately. The estimated pa-
rameters, Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) statistics with cor-
responding p-values are presented in Table 8. This table shows that the K-S as well A-D
tests suggest that the null hypothesis that each data set is drawn from GIED may be ac-
cepted at 5% level of significance. Also, we draw various diagnostic plots like empirical
& fitted pdfs, empirical & fitted cdfs, probability-probability (P-P) plots and quantile-
quantile (Q-Q) plots for both complete data sets and presented in Figure 1 and Figure 2,
respectively. These Figures also support above conclusions.

Now, we assume that X ∼ GIED(α,λ1) and Y ∼ GIED(β,λ2). The MLEs of
the unknown parameters are as follows: α̂ = 175.2867, λ̂1 = 16.8110, β̂ = 205.8832,
λ̂2 = 13.8826, and the associated log-likelihood value is L1 =−106.8932. Also, suppose
that X ∼GIED(α,λ) and Y ∼GIED(β,λ). The MLEs of the unknown parameters are
as follows: α̂ = 109.6088, β̂ = 323.8219, λ̂ = 15.1607, and the associated log-likelihood
value is L0 =−107.8660. Following testing of hypothesis is considered:

H0 : λ1 = λ2 against H1 : λ1 ̸= λ2,

and the test statistic χ 2 = −2(L0 − L1) follows the chi-square distribution with one
degree of freedom. Thus, the value ofχ 2 and the corresponding p-value can be evaluated
to accept or reject H0. Here, χ 2 = 1.9456 with corresponding p-value 0.1631. Hence at
5% level of significance the null hypothesis cannot be rejected. Therefore, in this case
the assumption of λ1 = λ2 is justified. Also, in this case, the estimated parameters, K-S
and A-D statistics with corresponding p-values are reported in Table 9. Table 9 supports
the choice of GIEDs with different shapes and common scale parameters.
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Figure 1 – Diagnostic plots for the fitted GIED for data set 1 (X : gauge length 10 mm).

TABLE 9
MLEs, K-S and A-D tests for real data sets assuming common scale parameter.

Data Set Shape Parameter Scale Parameter
K-S Test A-D Test

Statistic p-value Statistic p-value

Data Set 1 (X: gauge length 10 mm) 109.6088 15.1607 0.0796 0.8194 0.5333 0.7125
Data Set 2 (Y: gauge length 20 mm) 323.8219 15.1607 0.0583 0.9733 0.3089 0.9311
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Figure 2 – Diagnostic plots for the fitted GIED for data set 2 (Y : gauge length 20 mm).
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Figure 3 – The plots of profile log-likelihood of λ for data sets corresponding to censoring schemes
(C S1,C S2) and (C S3,C S4), respectively.

Further, two pairs of hybrid censored samples are generated from the above data
sets using the two sets of hybrid censoring schemes. The hybrid censoring schemes and
the corresponding generated data sets are reported in Table 10. Based on these data sets
the ML and Bayes estimates under SELF of R are computed. The plots of profile log-
likelihood of λ for both the censoring schemes are plotted in Figure 3. This Figure shows
that the likelihood equation for λ have a unique solution. The Bayes estimates of the
stress-strength parameter R for both censoring schemes are computed using Lindley’s
approximation and MCMC methods. Also, the convergence of generated sequences of
R for its stationary distribution using graphical diagnostic tools like trace plots, ACF
plots and histograms are checked. In MCMC method we use thining and burn-in period.
Here, M = 20,000, thining = every 5t h observation and burn-in period M0 = 800 are
considered for MCMC method. Figures 4 and 5 show the trace plots, ACF plots and

TABLE 10
The generated hybrid censored samples corresponding to real data sets.

Censoring Scheme Data sets

C S1 = (r1 = 50,T1 = 2.60) X: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454,
2.474, 2.518, 2.522, 2.525, 2.532, 2.575

C S2 = (r2 = 40,T1 = 3.50) Y:

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966,
1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240,
2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434,
2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554

C S3 = (r1 = 40,T1 = 3) X:
1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454,
2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659,
2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996

C S4 = (r2 = 30,T2 = 2.70) Y:
1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966,
1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240,
2.253
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Figure 4 – The trace, ACF and histogram with Gaussian density plots of the generated chain for
parameter R corresponding to censoring scheme (C S1,C S2).
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Figure 5 – The trace, ACF and histogram with Gaussian density plots of the generated chain for
parameter R corresponding to censoring scheme (C S3,C S4).

histograms with Gaussian kernel density estimates of R for both censoring schemes,
respectively. The trace plots of the generated chains indicate a random scatter and show
the convergence of chains for parameter R. ACF plots clearly show that chains are not at
all auto-correlated, so the generated samples may be considered as independent samples
from the target posterior distributions. The histogram with Gaussian kernel density
shows almost symmetrical and unimodal distribution of R.

Based on the censoring schemes (C S1, C S2), the ML and Bayes estimates
using Lindley’s approximation and MCMC methods are 0.7640, 0.7635, 0.7613, respec-
tively. Also, the 95% asymptotic confidence interval on logit scale, boot-p, boot-t confi-
dence and HPD credible intervals are (0.6466, 0.8514), (0.6511, 0.8691), (0.6647, 0.8997),
(0.6515, 0.8555), respectively. Similarly, based on censoring scheme (C S3, C S4), the ML
and Bayes estimates using Lindley’s approximation and MCMC methods are 0.7628,
0.7601, 0.7593, respectively. Also, the 95% asymptotic confidence interval based
on logit scale, boot-p, boot-t confidence and HPD credible intervals are (0.6426, 0.8518),
(0.6559, 0.8729), (0.6694, 0.9130), and (0.6609, 0.8419), respectively.
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7. CONCLUSIONS

In this article, the problem of classical and Bayesian estimation of stress-strength reli-
ability R = P (Y < X ) for generalized inverted exponential distribution using hybrid
censored samples was considered. The hybrid censoring scheme is an operational cen-
soring scheme and very useful in real life applications. Different estimation methods for
estimating the stress-strength reliability in the case of different shapes and common scale
unknown parameters of GIED were considered. The MLE of R and its asymptotic dis-
tribution was computed. A simple iterative procedure was provided for computation of
MLEs of the unknown parameters and R. Also, two parametric bootstrap confidence
intervals were proposed and it was observed that the asymptotic confidence interval
works the best even for small effective sample sizes.

The Bayes estimator of R under squared error loss function using non-informative
and gamma informative priors was constructed. Bayes estimate did not come out in
closed form, Lindley’s approximation and MCMC methods were used for computation
of the Bayes estimate and associated HPD credible interval. The performance of the
point and interval estimates of R is examined by extensive simulations. Simulation re-
sults suggested that the performance of Bayes estimator in point estimation and HPD
credible interval based on gamma informative priors work very well and these can be
used for all practical purposes. A real data example is also discussed for illustration pur-
poses.
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SUMMARY

Based on the hybrid censored samples, this article deals with the problem of point and interval
estimation of the stress-strength reliability R= P (Y <X )when X and Y both have independent
generalized inverted exponential distributions with different shape and common scale parameters.
The maximum likelihood estimation, Bayes estimation and parametric bootstrap methods are
used for estimating R. Also, asymptotic confidence interval of R is derived based on asymptotic
distribution of R. Bayesian estimation procedure is carried out using Lindley approximation and
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Markov Chain Monte Carlo methods. Bayes estimate and the HPD credible interval of R are
obtained using non-informative and gamma informative priors. A Monte Carlo simulation study
is carried out for comparing the different proposed estimation methods. Finally, a pair of real data
sets is analyzed for illustration purposes.

Keywords: Stress-strength reliability; Generalized inverted exponential distribution; Maximum
likelihood estimation; Bootstrap confidence interval; Bayes estimation; MCMC method; HPD
credible interval.
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