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1. INTRODUCTION

Let X be a non-negative and absolutely continuous random variable representing the
lifetime of a component/system with a probability density function (pdf) f (.). Then
the differential extropy of X is defined as (see Lad and Sanfilippo, 2015)

J (X ) =−1
2

∫ ∞

0
f 2(x)d x. (1)

Extropy was originally introduced in the discrete set up. If X is a discrete random vari-
able taking values {x1, x2, ..., xN }with respective probabilities pN = {p1, p2, ..., pN }, then
extropy is defined as J (pN ) = −

∑N
i=1(1 − pi ) log(1 − pi ), a complementary dual of

Shannon entropy H (pN ) =−
∑N

i=1 pi log pi . Similar to Shannon entropy, extropy pro-
vides the amount of uncertainty contained in the probability distribution of a random
variable. The differential extropy J (X ) in (1) is the limiting form of J (pN ), given by
J (X ) = lim

∆x→0

¦

J (pN )−1
∆x

©

. The notion of extropy has been found applications in various

fields. One of the statistical applications of extropy is to score the forecasting distri-
butions using the total log scoring rule. Under the total log scoring rule, the expected
score of a forecasting distribution equals the negative sum of the entropy and extropy of
this distribution. Another statistical application of extropy is to compare the uncertain-
ties of two random variables. For instance, the uncertainty in X may be measured by
the difference in the outcomes from two independently conducted experiments under
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identical conditions. If X1 and X2 are two such outcomes, then X1 −X2 measures the
uncertainty in X . If the pdf of X is denoted by f , then the pdf of X1−X2 can be defined
by g (u) =

∫∞
−∞ f (x) f (x − u)d x. This implies the probability of X1−X2 approximately

equals to g (0) = −2J (X ). If the extropy of X is less than another random variable Y ,
then X has more uncertainty than Y (see Jahanshahi et al., 2019; Qiu et al., 2019).

In reliability and life testing, the data are generally truncated and in such cases J (X )
is not an appropriate measure. Assume that the component X has survived t units
time. Then the variable of interest is the residual lifetime of the component, denoted
by Xt = (X − t |X > t ), t > 0. Based on this idea, Qiu and Jia (2018) proposed the
residual extropy and studied its various properties. For a non-negative and absolutely
continuous random variable X , differential extropy of the residual random variable Xt
is given by

Jt (X ) = J (Xt ) =−
1

2
�

F̄ (t )
�2

∫ ∞

t
f 2(x)d x, t ≥ 0. (2)

For more recent works on (1) and (2) and its applications, one can also refer to Raqab
and Qiu (2018), Yang et al. (2018), Alizadeh Noughabi and Jarrahiferiz (2019), Jose and
Sathar (2019) and the references therein.

Note that both J (X ) and Jt (X ) are defined in terms of the distribution function.
However, in certain situations we do not have a tractable distribution function while its
quantile function exists, where neither J (X ) nor Jt (X ) is amenable for computing un-
certainty. For example, many quantile functions used in applied works such as various
forms of lambda distributions, the power-Pareto distributions, Govindarajulu distribu-
tion etc., do not have tractable distribution functions. This calls for a separate study
on extropy using quantile function. Quantile functions are efficient and equivalent al-
ternatives to the distribution function in modelling and analysis of statistical data (see
Gilchrist, 2000; Nair and Sankaran, 2009), defined by

Q(u) = F −1(u) = inf{x|F (x)≥ u}, 0< u < 1. (3)

There are certain properties of quantile functions that are not shared by the distribu-
tion function. For a detailed and recent study on quantile function and its properties in
modelling and analysis we refer to Nair and Vineshkumar (2011), Nair et al. (2013), Sree-
lakshmi et al. (2018) and the references therein. Recently, the study of information mea-
sures using quantile function has also attracted among researchers. Sunoj and Sankaran
(2012) introduced a quantile-based Shannon entropy and its residual form. Quantile ver-
sions of the cumulative entropy functions in the residual and past lifetimes are studied
by Sankaran and Sunoj (2017). For further study on quantile-based entropy and its re-
lated measures we refer to Yu and Wang (2013), Kumar and Rekha (2018), Kayal and
Tripathy (2018), Sunoj et al. (2018) and Krishnan et al. (2019). Motivated with these, the



Some Reliability Properties of Extropy and its Related Measures Using Quantile Function 415

present study extends the domain of application of extropy and its associated measures
using quantile functions that lead to useful lifetime models.

The organization of the paper is unfolded as follows. In Section 2 we introduce the
quantile-based extropy and its residual version and obtain some characterization results
and properties. Section 3 presents extropy of order statistics using quantile function.
We extend the measure based on survival function known as cumulative residual ex-
tropy and study its properties in Section 4. Finally, Section 5 proposes a non-parametric
estimator for quantile-based extropy function and applies the method to a real data set.

2. QUANTILE-BASED RESIDUAL EXTROPY

If f (·) is the pdf of X , then f (Q(u)) and q(u) = d
d u Q(u) respectively known as the

density quantile function and quantile density function (see Parzen, 1979). Using (3),
we obtain F (Q(u)) = u and differentiating it with respect to u obtain

q(u) f (Q(u)) = 1.

An important quantile measure useful in reliability analysis is the hazard quantile func-
tion

H (u) = h(Q(u)) =
1

(1− u)q(u)
, (4)

where h(t ) = f (t )
F̄ (t )

is the hazard rate of X . Note that H (u) determine Q(u) uniquely

(see Nair and Sankaran, 2009). Another important measure useful in quantile-based
reliability analysis is the mean residual quantile function (Nair and Sankaran, 2009),
given by

M (u) = m(Q(u)) =
1

(1− u)

∫ 1

u
(Q(p)−Q(u))d p, (5)

where m(t ) = E(X − t |X > t ) is the mean residual life function (MRLF) of X . M (u)
provides the mean remaining life of a unit beyond the 100(1− u)% of the distribution.
For more properties and applications of H (u) and M (u), one could refer to Nair et al.
(2013).

The quantile-based extropy based on (1) is defined by

L(X ) = −1
2

∫ 1

0
f 2(Q(p))dQ(p)

= −1
2

∫ 1

0
(q(p))−1d p

= −1
2

∫ 1

0
(1− p)H (p)d p. (6)
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L(X ) provides a quantile version of the extropy, that measures the uncertainty of X ,
using either quantile density function or hazard quantile function.

In the following example, we consider a quantile model useful in reliability analysis
for which no closed form distribution function exists.

EXAMPLE 1. Consider the quantile function (Midhu et al., 2013)

Q(u) =−(c +µ) log(1− u)− 2c u,µ> 0;−µ≤ c <µ,

corresponding to the linear mean residual quantile function (see Sankaran and Unnikrish-
nan Nair, 2009)

M (u) = c u +µ, µ> 0, −µ< c <µ, 0≤ u ≤ 1. (7)

Then L(X ) for (7) is obtained as

L(X ) =−1
2

�

−2c − (µ+ c) log(µ− c)+ (µ+ c) log(µ+ c)
4c2

�

.

TABLE 1
Quantile functions and the quantile-based extropy for some distributions.

Distribution Q(u) L(X )

Exponential − log(1−u)
λ ,λ > 0 −λ

4

Pareto II γ ((1− u)
−1
c − 1),γ , c > 0 − c2

2(2c+1)γ

Rescaled Beta R
�

1− (1− u)
1
c
�

, c , R> 0 − c2

2(2c−1)R

Generalized Pareto b
a [(1− u)−

a
a+1 − 1], b > 0,a >−1 − (a+1)2

2(3a+2)b

Power γ u
1
β ,γ ,β> 0 − β2

2(2β−1)γ

Uniform a+(b − a)u, −∞< a < b <∞ −1
2(b−a)

Davies c uλ1

(1−u)λ2
, c > 0;λ1,λ2 > 0 − 2 F̃1

�

1,2−λ1 ;−λ1+λ2+4;1− λ2
λ1

�

Γ (2−λ1)Γ (λ2+2)

2(cλ1)

Table 1 provides some well known quantile functions and its extropy function. L(X )
is not useful for a system that has survived to measure the uncertainty for some units of
time t . In such contexts, Jt (X ) is employed to measure the uncertainty. As mentioned in
Section 1, in life testing experiments truncation is common. The quantile-based residual
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extropy of Xt is given by

LQ (u) = − 1
2(1− u)2

∫ 1

u
f 2(Q(u))dQ(u)

= − 1
2(1− u)2

∫ 1

u
(q(p))−1d p

= − 1
2(1− u)2

∫ 1

u
(1− p)H (p)d p. (8)

Differentiating (8) with respect to u, we get

L′Q (u) =
H (u)

2(1− u)
+

2
(1− u)

�

−1
2(1− u)2

∫ 1

u
(1− p)H (p)d p

�

,

equivalently

q(u) =
�

2(1− u)2L′Q (u)− 4(1− u)LQ (u)
�−1

. (9)

Thus unlike Jt (X ) in (2), LQ (u) uniquely determines the quantile density function using
(9). The expressions of LQ (u) for different quantile functions are given in Table 2.

TABLE 2
Quantile-based residual extropy for some quantile functions.

Distribution Q(u) LQ (u)

Exponential − log(1−u)
λ ,λ > 0 − λ

4

Pareto II γ ((1− u)−
1
c − 1),γ , c > 0 − c2(1−u)

1
c

2γ (2c+1)

Rescaled Beta R
�

1− (1− u)
1
c
�

, c , R> 0 − c2(1−u)−
1
c

2R(2c−1)

Generalized Pareto b
a [(1− u)−

a
a+1 − 1], b > 0,a >−1 − (a+1)2(1−u)

a
a+1

2b (3a+2)

Power γ u
1
β ,γ ,β> 0 −

β2

 

1−u
− 1
β
+2
!

2γ (2β−1)(1−u)2

Uniform a+(b − a)u, −∞< a < b <∞ − 1
2(b−a)(1−u)

Davies c u
(1−u) , c > 0. 1−u

c
�

u
(1−u)2

+ 1
1−u

�

Note that for some important life distributions where the quantile function Q(u)
are of closed form expressions, however, in some cases only the quantile density func-
tion q(u) has a closed form expression. Therefore, in the following theorem we prove
a characterization of LQ (u) for a family of distributions that can be represented only
through q(u).
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THEOREM 2. The random variable X follows a distribution with quantile density
function

q(u) = k uδ (1− u)−(A+δ), k > 0,A,δ ∈ R, u ∈ (0,1). (10)

if and only if
(1− u)2LQ (u) =−k1B̄u (a, b ) ,

where k1 > 0 and B̄u (a, b ) =
∫ 1

u pa−1(1− p)b−1d p denote the incomplete beta function.

PROOF. The proof of ‘if’ part is straightforward. To prove the ‘only if’ part, assume
that (1− u)2LQ (u) = −k1B̄u (a, b ) holds. Differentiating both sides with respect to u
yields,

(1− u)2L′Q (u)− 2(1− u)LQ (u) = k1ua−1(1− u)b−1.

Now substituting the above expression in (9) and simplifying we obtain the required
quantile model (10). This completes the proof. 2

Note that the family of distributions (10) contains some important probability dis-
tributions such as, exponential (δ = 0,A = 1), Pareto (δ = 0,A < 1), rescaled beta
(δ = 0,A> 1), log-logistic (δ = λ− 1,A= 2) and Govindarajulu (Govindarajulu, 1977)
(δ =β− 1,A=−β) (see Nair et al., 2013).

Characterization problems generally identify some unique property possessed by
a probability distribution and it helps to obtain an exact model through the physical
characteristics of a data. The following theorem provides a characterization to some
important lifetime models based on LQ (u).

THEOREM 3. Let X be a random variable with quantile function Q(u) and hazard
quantile function H (u). The relationship LQ (u) = −kH (u), where k is a non-negative
constant holds for all u if and only if X has

1. rescaled beta distribution Q(u) = R
�

1− (1− u)
1
c

�

, 0≤ u ≤ 1, R> 0, c > 1
2 if k > 1

4

2. exponential law Q(u) =− log(1−u)
λ , 0≤ u ≤ 1;λ > 0 if k = 1

4 and

3. Pareto II distribution Q(u) = γ ((1− u)
−1
c − 1), 0≤ u ≤ 1; c ,α > 0 if 0< k < 1

4 .

PROOF. Assume that LQ (u) = −kH (u). Differentiating both sides and using (9),
we get

H (u) =−2k(1− u)H ′(u)+ 4kH (u),

implies,
H ′(u)
H (u)

=
4k − 1

2k(1− u)
.
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Now,

log H (u) =
4k − 1

2k
(− log(1− u))+ log c ,

equivalently,

H (u) =
c1

(1− u)
4k−1

2k

.

By using (4), H (u) uniquely determines underlying quantile density so that Q(u) =
∫ u

0
1

(1−p)H (p)d p. Thus, when k = 1
4 , H (u) = 1, which characterizes exponential distri-

bution. Similarly, for k < 1
4 and k > 1

4 respectively characterizes Pareto II and rescaled
beta models. The proof of ‘if’ part is straightforward. 2

DEFINITION 4. X is said to have increasing (decreasing) quantile-based residual ex-
tropy if LQ (u) is increasing (decreasing) in u.

THEOREM 5. Let X be a continuous random variable with quantile function Q(u)
and hazard quantile function H (u). If the quantile-based residual extropy is increasing (de-
creasing) in u, then LQ (u)≥ (≤)

−H (u)
4 .

PROOF. The proof is straightforward from (9). 2

DEFINITION 6. We say that X has less residual quantile extropy than Y, X ≤RQE Y
if LQX

(u)≤ LQY
(u) for all 0< u < 1.

DEFINITION 7. X is said to be smaller than Y in dispersive order, denoted by X ≤d i s p
Y, if QY (u)−QX (u) is increasing in u ∈ (0,1).

The following theorem provides that a system with less reliable lifetime contains less
information content in the quantile set up.

THEOREM 8. If X and Y are two random variables such that X ≤d i s p Y , then X ≤RQE
Y.

PROOF. X ≤d i s p Y implies that QY (u)−QX (u) is increasing in u. Using (8),

LQX
(u) =

−1
2(1− u)2

∫ 1

u
(qX (p))

−1d p ≤ −1
2(1− u)2

∫ 1

u
(qY (p))

−1d p,

LQX
(u)≤ LQY

(u),

which completes the proof. 2

DEFINITION 9. A lifetime random variable X is said to have increasing (decreasing)
failure rate (IFR (DFR)) if H (u) is increasing (decreasing).
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DEFINITION 10. X is said to be smaller than Y in convex transform order, denoted by
X ≤c Y, if qY (u)

qX (u)
is increasing in u, (see Shaked and Shanthikumar, 2007; Nair et al., 2013).

In the following theorem we prove the closure property quantile-based residual ex-
tropy order using the convex transform order

THEOREM 11. Let X and Y be two non-negative random variables with quantile den-
sities qX (·) and qY (·) respectively such that qX (0) ≤ qY (0). If X ≤c Y, then LQX

(u) ≤
LQY
(u).

PROOF. We have X ≤c Y, iff qY (u)
qX (u)

is increasing in 0≤ u ≤ 1. That is, q ′X (u)
qX (u)

≤ q ′Y (u)
qY (u)

,
equivalently, qX (u)≤ qY (u) and therefore

LQX
(u) =

−1
2(1− u)2

∫ 1

u
(qX (p))

−1d p ≤ −1
2(1− u)2

∫ 1

u
(qY (p))

−1d p = LQY
(u).

2

The following theorem gives the upper bound of extropy based on some important
ageing classes.

THEOREM 12. If X is said to have increasing failure rate (IFR (IFRA, NBU)) then
LQX
(u)≤ LQY

(u), where Y has exponential distribution.

PROOF. X is I F R(I F RA,NBU ) if and only if X ≤c (≤∗,≤s u )Y, where Y has the
exponential distribution with mean 1

λ (see Shaked and Shanthikumar, 2007). When Y is

exponential we have LQY
(u) = −λ4 , we obtain the upper bound of extropy of IFR (IFRA,

NBU) classes by Theorem 11. 2

In the next theorem, we obtain a simple characterization result that connects quantile-
based extropy and mean residual quantile function.

THEOREM 13. Let X be a non-negative continuous random variable with quantile
function Q(·) and mean residual quantile function M (·). Then the relationship

LQ (u)M (u) =−k , k ≥ 0 (11)

holds if and only if X has generalized Pareto distribution with quantile function Q(u) =
b
a

�

(1− u)−
a

a+1 − 1
�

, a >−1, b > 0.
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PROOF. The ‘only if’ part is straightforward. To prove the ‘if’ part, assume that
(11) holds. From (8), we get

∫ 1

u
(1− p)H (p)d p =

2k(1− u)2

M (u)
. (12)

Differentiating (12) with respect to u and simplifying,

H (u) =
2k (2M (u)+ (1− u)M ′(u))

(M (u))2
.

Equivalently,
(M (u))2 H (u) = 2k

�

2M (u)+ (1− u)M ′(u)
�

. (13)

Differentiating (5) with respect to u, we have

1
H (u)

=M (u)− (1− u)M ′(u),

and substituting it in (13) yield,

(M (u))2 = 2k
�

2 (M (u))2− (1− u)M (u)M ′(u)− (1− u)2
�

M ′(u)
�2� ,

or

2k
�

M ′(u)
M (u)

�2

+
2k
(1− u)

�

M ′(u)
M (u)

�

+
(1− 4k)
(1− u)2

= 0,

which provides

2k
� d y

d u

�2

+
2k
(1− u)

� d y
d u

�

+
(1− 4k)
(1− u)2

= 0,

where y = log M (u). The solution of the above differential equation is given by M ′(u)
M (u) =

−2k±
p

36k2−8k
4k(1−u) = c1

(1−u) , c1 > 0, or equivalently M (u) = k1(1− u)−c1 , the mean residual
quantile function of generalized Pareto model. This completes the proof. 2

3. EXTROPY OF ORDER STATISTICS

Suppose X1,X2, ...,Xn be a random sample from a population with probability density
function f (.) and cumulative distribution function F (.) and let X1:n ≤ X2:n ≤ ...≤ Xn:n
be the order statistics obtained by arranging the preceding random sample in increasing
order of magnitude. Then the probability density function of the i t h order statistic Xi :n ,
is given by

fi :n(x) =
1

B(i , n− i + 1)
(F (x))i−1 �F̄ (x)

�n−i
f (x),
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where

B(a, b ) =
∫ 1

0
xa−1(1− x)b−1d x;a, b > 0,

is the beta function. The corresponding quantile-based density function of fi :n(x) be-
comes

fi :n(u) = fi :n(Q(u)) =
u i−1(1− u)n−i

B(i , n− i + 1)q(u)
.

Sunoj et al. (2017) introduced a quantile-based entropy of order statistics and studied its
properties.

Order statistics have a wide variety of applications. It is used in digital image pro-
cessing, health data, characterization of probability distributions, estimation theory,
goodness of fit tests, reliability analysis etc. Order statistics naturally appear in real life
whenever we need to arrange observations in ascending order; say for example prices ar-
ranged from smallest to largest, scores scored by a player in last ten innings from small-
est to largest and so on. The study of order statistics needs special considerations due to
their natural dependence. In reliability and life testing studies, the i t h order statistic Xi :n
refers to the lifetime of a (n − i + 1) out-of-n system. For properties and applications,
see Arnold et al. (1992) and David and Nagaraja (2003). A large volume of literature is
available on entropy of order statistics (see Wong and Chen, 1990; Baratpour et al., 2008;
Zarezadeh and Asadi, 2010; Abbasnejad and Arghami, 2010). In the context of extropy
of order statistics and record values, Qiu (2017) obtained some characterization results
and bounds to it. However, all these based on the distribution function approach. We
consider now the extropy of order statistics using quantile function.

Let Xi :n be the i t h order statistic. Extropy of the i t h order statistic based on (1) is
given by

J (Xi :n) =−
1
2

∫ ∞

0
f 2
i :n(x)d x. (14)

Within the framework of quantile functions, the quantile-based extropy based on (14)
is obtained as

L(Xi :n) = −1
2

∫ 1

0

�

1
B(i , n− i + 1)

p i−1(1− p)n−i (q(p))−1
�2

dQ(p)

= −1
2

∫ 1

0

�

p i−1(1− p)n−i

B(i , n− i + 1)

�2

(q(p))−1d p. (15)

In system reliability, first order statistic represents the lifetime of a series system while
the n t h order statistic measures the lifetime of a parallel system. For a series system
(i = 1),

L(X1:n) =−
1
2

∫ 1

0

�

n(1− p)n−1�2 (q(p))−1d p. (16)
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For a parallel system (i = n),

L(Xn:n) =−
1
2

∫ 1

0
(n pn−1)2(q(p))−1d p. (17)

The following theorem provides some interesting properties of quantile-based ex-
tropy of order statistics when the pdf of the underlying iid random variables are sym-
metric.

THEOREM 14. Let X1,X2, ...,Xn be iid samples whose distribution is symmetric about
mean µ. Then

1. L(Xi :n) = L(Xn−i+1:n)

2. ∆L(Xi :n) =−∆L(Xn−i :n),∀i = 1,2, ..., n−1 where∆L(Xi :n) = L(Xi+1:n)−L(Xi :n).

3. If Y = X−µ
a then L(Yi :n) = aL(Xi :n).

PROOF. For a symmetric random variable Xi :n=
d −Xn−i+1, equivalently fi :n(µ+

x) = fn−i+1:n(µ− x), and therefore

u i−1(1− u)n−i

B(i , n− i + 1)
=

un−i (1− u)i−1

B(n− i + 1, i)
.

(a) We have

L(Xn−i+1:n) = −1
2

∫ 1

0

�

pn−1(1− p)i−1

B(n− i + 1, i)

�2

(q(p))−1d p

= −1
2

∫ 1

0

�

p i−1(1− p)n−i

B(i , n− i + 1)

�2

(q(p))−1d p

= L(Xi :n).

1. We have ∆L(Xi :n) = L(Xi+1:n)− L(Xi :n) and hence ∆L(Xn−i :n) = L(Xn−i+1:n)−
L(Xn−i : n) =−∆L(Xi :n).

(c) Let Y = X−µ
a .

Then QY (u) =
QX (u)−µ

a . Now,

L(Yi :n) = −1
2

∫ 1

0

�

p i−1(1− p)n−i

B(i , n− i + 1)

�2� qX (p)
a

�−1

d p

= aL(Xi :n).
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We now consider the quantile-based residual extropy of the i t h order statistic based
on the random variable Xt , given by

LQXi :n
(u) =

−1

2(B̄u (i , n− i + 1))2

∫ 1

u
p2(i−1)(1− p)2(n−i)(q(p))−1d p, (18)

where B̄u (i , n− i + 1) =
∫ 1

u p i−1(1− p)n−i d p. For i = 1,2, (18) reduces to the quantile-
based residual extropy of series system

LQX1:n
(u) =− n2

2(1− u)2n

∫ 1

u
(1− p)2(n−1)(q(p))−1d p, (19)

and quantile-based residual extropy for parallel system, given by

LQXn:n
(u) =− n2

u2n

∫ 1

u
p2(n−1)(q(p))−1d p. (20)

In the case of series system, differentiating (19) with respect to u, we get

L′QX1:n
(u) =

n2H (u)
2(1− u)

+
2n
(1− u)

LX1:n
(u),

equivalently, the quantile density function

q(u) =
n2

2

�

(1− u)2L′QX1:n
(u)− 2nLX1:n

(u)
�−1

. (21)

Thus (21) provides an explicit formula to identify the underlying distribution for differ-
ent functional forms of quantile-based residual extropy of the first order statistic. Table 3
gives different probability models and quantile-based extropy of the first order statistics.
Further if LX1:n

(u) is increasing in u, then LQX1:n
(u)≥ −nH (u)

4 .

THEOREM 15. Let X be a random variable with hazard quantile function H (u). If
LQX1:n

(u) =−kH (u), for all u ∈ (0,1)

1. a rescaled beta distribution, if and only if k > n
4 and c > 1

2n ;

2. an exponential distribution if and only if k = n
4 ;

3. a Pareto distribution if and only if 0< k < n
4 .

PROOF. The proof is similar to Theorem 3. 2
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TABLE 3
Quantile functions and the quantile-based extropy of first order statistic.

Distribution Q(u) LQX1:n
(u)

Exponential − log
( 1− u)λ,λ > 0 −nλ

4

Pareto II γ ((1− u)
−1
c − 1),γ , c > 0 c2n2(1−u)1/c

2γ (2cn+1)

Rescaled Beta R
�

1− (1− u)
1
c
�

, c , R> 0 − c2n2(1−u)−1/c

2R(2cn−1)

Generalized Pareto b
a [(1− u)−

a
a+1 − 1], b > 0,a >−1 − (a+1)2n2(1−u)

a
a+1

2b (2(a+1)n+a)

Power γ u
1
β ,γ ,β> 0 −

βn2(1−u)−2n





Γ
�

2− 1
β

�

Γ (2n−1)

Γ
�

2n− 1
β
+1
� −Bu

�

2− 1
β

,2n−1
�





2γ

Uniform a+(b − a)u, −∞< a < b <∞ − n2

2(2n−1)(u−1)(a−b )

Davies c u
(1−u) , c > 0. − n2(u−1)2

2c(2n−1)(1−u)

THEOREM 16. The relationship L(Xi :n) = nL(X ) holds, if and only if X is exponential
with quantile function Q(u) =− 1

λ log(1− u), λ > 0.

Next theorem gives the sufficient condition for decreasing quantile-based extropy of
first order statistic.

THEOREM 17. If X has a decreasing density quantile function f (Q(.)) then LQX1:n
(u)

is decreasing.

PROOF. For 0< u1 < u2 < 1, f (Q(u2))≤ f (Q(u1)). From (19), we write

LQX1:n
(u1) = − n2

2(1− u1)2n

∫ 1

u1

(1− p1)
2(n−1) f (Q(p1))d p1

> − n2

2(1− u2)2n

∫ 1

u2

(1− p2)
2(n−1) f (Q(p2))d p2

= LQX1:n
(u2).

2

The following counterexample shows that the above theorem is applicable for the
first order statistics only. The theorem violates for i > 1.

EXAMPLE 18. Consider power-Pareto (c = λ1 = λ2 = 1) distribution with quantile
function Q(u) = u

1−u . It is clear that the density quantile function f (Q(u)) = (1− u)2 is
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decreasing in u. Now we obtain

LX2:2
(u) = − 2

(1− u2)2

∫ 1

u
p2(q(p))−1d p

= − 2
(1− u2)2

∫ 1

u
p2(1− p)2d p. (22)

From (22), we get LX2:2
( 14 ) = −0.068 and LX2:2

( 12 ) = −0.059. Clearly, LX2:2
( 14 ) < LX2:2

( 12 ),
which is not decreasing in u.

4. CUMULATIVE RESIDUAL EXTROPY

In this section we introduce a cumulative residual extropy using distribution function
and quantile approaches. Cumulative extropy of a non-negative continuous random
variable X is defined by (see Jahanshahi et al., 2019)

C E(X ) =−1
2

∫ ∞

0
F̄ 2(x)d x. (23)

C E(X ) is obtained by replacing the probability density function f (.) in (1) by the sur-
vival function F̄ (.). Unlike (1), C E(X ) is more stable as the cumulative distribution
function F (.) or F̄ (.) always exists. For the residual random variable Xt , (23) modified
to

C E(Xt ) =−
1
2

∫ ∞

t

�

F̄ 2(x)
F̄ 2(t )

�

d x, (24)

can be termed as cumulative residual extropy. Based on (23), the quantile-based cumula-
tive residual extropy can be defined as

Φ(X ) =−1
2

∫ 1

0
(1− p)2q(p)d p. (25)

The corresponding quantile-based cumulative residual extropy function using (24)
becomes

ΦQ (u) =−
1

2(1− u)2

∫ 1

u
(1− p)2q(p)d p. (26)

Differentiating both sides of (26) with respect to u, we get

q(u) = 2Φ′Q (u)−
4ΦQ (u)

(1− u)
. (27)
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The identity (27) uniquely determines the quantile density function.

Equation (26) can be also expressed in terms of the hazard quantile function by

ΦQ (u) =−
1

2(1− u)2

∫ 1

u

(1− p)
H (p)

d p. (28)

Using the interrelationship between hazard quantile function and mean residual quan-
tile function, given by (H (u))−1 =M (u)− (1− u)M ′(u), (28) becomes

ΦQ (u) =−
1

2(1− u)2

∫ 1

u
(1− p)M (p)d p +

1
2(1− u)2

∫ 1

u
(1− p)2d M (p). (29)

Applying integration by-parts on the second term of (29), yields

ΦQ (u) =−
1

2(1− u)2

∫ 1

u
(1− p)M (p)d p −

M (u)
2

. (30)

Equation (30) represents the quantile-based cumulative residual extropy in terms of mean
residual quantile function M (u).

EXAMPLE 19. For proportional hazard quantile function model QY (u) =QX (1−(1−
u)

1
θ ),

ΦQY
(u) =− 1

2θ(1− u)2

∫ 1

u
(1− p)1+

1
θ qX (1− (1− p)

1
θ )d p.

Taking v = 1− (1− p)
1
θ , then

ΦQY
(u) =− 1

2θ(1− u)2

∫ 1

1−(1−u)
1
θ

(1− v)2θqX (v)d v.

THEOREM 20. For a non-negative continuous random variable X with ΦQ (u) = c ,
where c > 0 is a constant. Then H (u) is a constant, which characterizes exponential distri-
bution.

PROOF. The proof directly follows from (27). 2

DEFINITION 21. We say that X has less cumulative residual quantile extropy than Y,
denoted by X ≤C RQE Y if ΦQX

(u)≤ ΦQY
(u), for all 0< u < 1.

The following theorem examines the relationship between two random variables in
terms of hazard quantile order and cumulative residual quantile extropy order.

THEOREM 22. If X ≤H Q Y then X ≥C RQE Y.
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PROOF. Let X ≤H Q Y. So that qX (u)≤ qY (u) implies that

∫ 1

u
(1− p)2qX (p)d p ≤

∫ 1

u
(1− p)2qY (p)d p

equivalently

− 1
2(1− u)2

∫ 1

u
(1− p)2qX (p)d p ≥− 1

2(1− u)2

∫ 1

u
(1− p)2qY (p)d p

Thus ΦQX
(u)≥ ΦQY

(u). 2

THEOREM 23. X ≤C RQE Y ⇒X ≤H Q Y.

The following counterexample illustrates the above theorem.

EXAMPLE 24. Let QX (u) = u2 and QY (u) = 2u−u2, both do not have a tractable dis-
tribution function. We have ΦQX

(u) = (3u+1)(u−1)
12 and ΦQY

(u) =− (u−1)2

4 holds X ≤C RQE

Y . But the hazard quantile functionsHX (u) =
1

2u(1−u) and HY (u) =
1

2(1−u)2 has the prop-

erty HX (u) > HY (u) for u = 1
3 and HX (u) < HY (u) for u = 2

3 . Thus X ≤C RQE Y does
not imply X ≤H Q Y.

THEOREM 25. If
ΦQY

(u)
ΦQX

(u) is decreasing in u, then X ≤C RQE Y ⇒X ≤H Q Y.

PROOF.

If
ΦQY
(u)

ΦQX
(u)

is increasing in u, equivalently
qY (u)
qX (u)

≥
∫ 1

u (1− p)2qX (p)d p
∫ 1

u (1− p)2qY (p)d p
≤ 1,

which implies HX (u)≥HY (u). Thus X ≤H Q Y. 2

DEFINITION 26. X is said to have increasing (decreasing) cumulative residual quantile
extropy (ICRQE (DCRQE)) if ΦQ (u) is increasing in u.

Next theorem provides an upper (lower) bound forΦQ (u) based on ICRQE (DCRQE)
classes.

THEOREM 27. If X is ICRQE (DCRQE) thenΦQ (u)≤ (≥)
1
4 ((1− u)M ′(u)−M (u)) .

For exponential distribution with Q(u) =− 1
λ log(1− u), ΦQ (u) =−

1
4λ . The exponen-

tial distribution is the boundary class of ICRQE and DCRQE classes.

We now prove a characterization theorem connecting cumulative residual quantile
extropy and mean residual quantile function for some important lifetime models.
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THEOREM 28. Let X be a random variable with quantile function Q(u) and mean
residual quantile function M (u) for all u ∈ (0,1). The relationship ΦQ (u) = −kM (u),
where k is a non-negative constant holds for all u if and only if X is distributed as rescaled
beta, exponential or Pareto II according as k

>=
<

1
4 .

PROOF. Assume that

ΦQ (u) =−kM (u), (31)

holds. Differentiating (31) with respect to u, we get

Φ′Q (u) =−kM ′(u),

and using (27), we obtain

−2kM ′(u) = q(u)+
4ΦQ (u)

1− u
.

Substituting q(u) = M (u)
1−u −M ′(u) and using (31), yield

M ′(u)
M (u)

=
�

1− 4k
1− 2k

��

1
1− u

�

When k = 1
4 implies M ′(u) = 0, equivalently M (u) = a constant, characterizes exponen-

tial distribution, and for k > (<) 14 ,

d
d u

log M (u) =
�

4k − 1
2k − 1

� d
d u
(log(1− u)),

implies M (u) = k1(1− u)1+
2k

2k−1 , where k1 is the constant of integration and applying
q(u) in terms of M (u) provides the required models. 2

THEOREM 29. If Y = aX + b , with a > 0 and b > 0, then ΦQY
(u) = aΦQX

(u).

PROOF. Let Y = aX + b , with a > 0 and b ≥ 0. Then

FY (y) = P [Y ≤ y] = P [aX + b ≤ y] = FX

� y − b
a

�

.

By setting FX

�

y−b
a

�

= u, we get QY (u) = aQX (u)+ b , we have

ΦQY
(u) =− 1

2(1− u)2

∫ 1

u
(1−p)2qY (p)d p =− 1

2(1− u)2

∫ 1

u
(1−p)2aqX (p)d p = aΦQX

(u).

2



430 A. S. Krishnan et al.

REMARK 30. Theorem 29 implies that ΦQ (u) is a shift-independent measure.

THEOREM 31. The random variable X follows a distribution with quantile density
function (10) if and only if

(1− u)2ΦQ (u) =−k2B̄u (c , d ),

where k2, c , d > 0.

PROOF. The ‘if’ part is direct. Applying similar steps as in Theorem 2 and using
(27), the ‘only if’ part can be easily proved. 2

5. APPLICATIONS OF QUANTILE-BASED EXTROPY

In this section, we construct an empirical estimator for quantile-based extropy and ex-
amine its usefulness using simulation and real data analysis.

To propose an empirical estimator for quantile-based extropy function, we consider
a random sample X1,X2, ...,Xn . We compute empirical distribution function FX :n . The
empirical quantile function is given by (Parzen, 1979)

Q̂(u) = n
� j

n
− u

�

X( j−1)+ n
�

u −
j − 1

n

�

X( j ), (32)

for j−1
n ≤ u ≤ j

n and j = 1, ..., n. The corresponding empirical estimator for quantile

density function q̂(u) = Q̂ ′(u) is q̂(u) = n(X( j ) − X( j−1)) for j−1
n ≤ u ≤ j

n and j =
1,2, ..., n. From (6), the empirical estimator for quantile-based extropy becomes,

L̂(X ) =−1
2

∫ 1

0
(q̂(p))−1d p,

where q̂(p) = n
�

X( j )−X( j−1)

�

is the empirical estimator of quantile density function

(see Parzen, 1979). Then L̂(X ) can be written as

L̂(X ) =− 1
2n

n
∑

j=1

�

n(X( j )−X( j−1))
�−1

. (33)

5.1. Simulation study

To assess the efficiency of the estimator (33), we conduct a Monte Carlo simulation study
with various sample sizes n = 20,100,300,600,900 and 1000. The data are generated
from Davies (power-Pareto) distribution given in Table 1, with parameters c = 1,λ1 = 1
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Figure 1 – Mean square error of the estimator.

and λ2 = 7. The true value of L(X ) for the Davies distribution is−0.038. The bias, MSE
and estimated values of L(X ) based on (33) are then computed for each of these sample
sizes, and given in Table 4. The MSE values are also plotted in Figure 1. It is evident
from Table 4 and Figure 1 that both the bias and MSE of L̂(X ) decrease with increase in
sample size, validates the performance of L̂(X ).

TABLE 4
Bias, MSE and extropy estimates of power-Pareto distribution with c = 1,λ1 = 1 and λ2 = 7.

n 20 100 300 600 900 1000

Bias 0.4782 0.4345 0.4393 0.4288 0.4008 0.3759
MSE 0.3429 0.0426 0.0075 0.0066 0.0020 0.0008
L̂(X ) -0.5162 -0.4725 -0.4774 -0.4668 -0.4389 -0.4139

5.2. Data analysis

For establishing the usefulness of the proposed quantile-based extropy, we apply the
above empirical estimator L̂(X ) in (33) to real-life data set. The data given in Table 5
consist of the times (in months) to first failure of 20 small electric carts, reported in
Zimmer et al. (1998).

We fit the data using Davies distribution, given in Table 4 with parameters c ,λ1
and λ2. To estimate the parameters, we use the method of L- moments, which are the
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TABLE 5
Time to first failure of 20 electric carts from Zimmer et al. (1998).

Failure order (i ) 1 2 3 4 5 6 7 8 9 10

First failure time 0.9 1.5 2.3 3.2 3.9 5.0 6.2 7.5 8.3 10.4
(in months)

Failure order (i ) 11 12 13 14 15 16 17 18 19 20

First failure time 11.1 12.6 15.0 16.3 19.3 22.6 24.8 31.5 38.1 53.0
(in months)

competing alternatives generally used in quantile-based analysis than the conventional
moments in distribution function approach (see Hosking, 1992). Since Davies distribu-
tion contains three parameters, we take three sample L- moments which are respectively
given by

l1 =
�

n
1

�−1 n
∑

i=1

X(i) = 14.675

l2 =
1
2

�

n
2

�−1 n
∑

i=1

��

i − 1
1

�

−
�

n− i
1

��

X(i) = 7.3345

l3 =
1
3

�

n
3

�−1 n
∑

i=1

��

i − 1
2

�

− 2
�

i − 1
1

��

n− i
1

�

+
�

n− i
2

��

X(i) = 2.4678,

where X(i) is the i t h order statistic. The corresponding population L−moments based
on Davies distribution with parameters c ,λ1 and λ2 are given by

L1 =µ= cB(λ1+ 1,1−λ2),

L2 =
c(λ1+λ2)
λ1−λ2+ 2

B(λ1+ 1,1−λ2),

and

L3 =
c(λ2

1+λ
2
2+ 4λ1λ2+λ2−λ1)B(λ1+ 1,1−λ2)
(λ1−λ2+ 2)(λ1−λ2+ 3)

.

We equate sample L- moments to population L- moments, given by

lr = Lr , r = 1,2,3. (34)

Solutions of set of equations (34) give the estimates of c ,λ1 and λ2, which are obtained
as

ĉ = 18.6139, λ̂1 = 1.1255, λ̂2 = 0.2911.
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Figure 2 – Q-Q plot for the data set.

Now the empirical estimate of extropy, based on L̂(X ) in (33) is−0.0203, while the para-
metric estimate of the extropy measure L(X ) for the same family of distribution with
ĉ , λ̂1 and λ̂2 is −0.0174, shows a closeness in values based on the empirical estimator
and parameter estimates. Also, based on the given data L̂(X ) = −0.0203 indicates that
the amount of uncertainty contained in the times (in months) to first failure of 20 small
electric carts is relatively small.

To check the validity of the Davies distribution quantile model, we use Q −Q plot
which are drawn in Figure 2. Even if there exists a slight discrepancy in the tail obser-
vations, Q −Q plot shows a reasonably a good fit to the model. We also carried out
the chi-square goodness of fit test to check the adequacy of the model. The chi-squared
statistic value is 2.9388 with P - value 0.2300, indicates that the proposed model is a rea-
sonably good fit to the given data set .

6. CONCLUSION

In this paper we have proposed quantile-based extropy and studied some monotone
properties, characterizations and ordering relations. We have introduced the quantile-
based extropy of order statistics. We have also obtained the cumulative extropy and its
residual form based on quantile function and obtained some characteristic results. We
have proposed an empirical estimator for quantile-based extropy and illustrated its per-
formance using simulated and real data sets. As an alternative and to make a comparison
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with the empirical estimator L̂(X ), one can also consider other nonparametric methods
of estimation such as the quantile-based kernel estimator of LQ (X ), similar to the one
proposed by Alizadeh Noughabi and Jarrahiferiz (2019) in the distribution function ap-
proach, however, requires a separate study.
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SUMMARY

Extropy is a recent addition to the family of information measures as a complementary dual of
Shannon entropy, to measure the uncertainty contained in a probability distribution of a random
variable. A probability distribution can be specified either in terms of the distribution function
or by the quantile function. In many applied works, there do not have any tractable distribution
function but the quantile function exists, where a study on the quantile-based extropy are of im-
portance. The present paper thus focuses on deriving some properties of extropy and its related
measures using quantile function. Some ordering relations of quantile-based residual extropy are
presented. We also introduce the quantile-based extropy of order statistics and cumulative extropy
and studied its properties. Some applications of empirical estimation of quantile-based extropy
using simulation and real data analysis are investigated.

Keywords: Extropy; Quantile function; Hazard quantile function; Order statistics; Mean residual
quantile function.


	Introduction
	Quantile-based residual extropy
	Extropy of order statistics
	Cumulative residual extropy
	Applications of quantile-based extropy
	Simulation study
	Data analysis

	Conclusion

