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1. INTRODUCTION

The capture-recapture method is widely used to estimate the size of animal and human
populations. In human populations "being captured at the kth occasion" is replaced by
"being included in the kth list". In this case the estimation is based on the informa-
tion acquired from the overlapping lists of cases (Sekar and Deming, 1949; International
working group for disease monitoring and forecasting, 1995a,b).

In epidemiology, the capture-recapture technique is used to estimates the popula-
tion size of hidden phenomena such as drug users (Brugal et al., 1999, 2004; Hay, 2000;
Comiskey and Barry, 2001; Frischer et al., 2001; Buster et al., 2001; Lange et al., 2003;
Gemmell et al., 2004; Hickmann et al., 2004; Platt et al., 2004; Hope et al., 2005), deaths
due to traffic accidents (Razzak and Luby, 1998), prostitution (Roberts and Brewer,
2006), people infected with the Human Immunodeficiency Virus (Abeni et al., 1994; Bar-
tolucci and Forcina, 2006), and other diseases (Tilling et al., 2001; Zwane and Heijden,
2005). A closed population and constant covariate values across captures are assumed
in this paper. There are no births, deaths or migrations, so the size of the population
under study is constant over the capture time. These assumptions are likely to be valid
for surveys performed in a relatively short time.
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In the epidemiological application of capture-recapture methods, two main prob-
lems may affect the estimation: the dependence among lists and the heterogeneity of
capture probabilities among individuals. The dependence is due to the association be-
tween lists within each individual (the capture in a list has a direct causal effect on the
capture in another list).

The heterogeneity relates to the effect of the individual characteristics (such as gen-
der, age, ethnicity, etc...) on capture probabilities. Hwang and Huggins (2005) have
shown that ignoring the heterogeneity of capture probabilities may lead to the under-
estimation of the population size. The Poisson log-linear model (LLM) can be used to
model both the dependence and the heterogeneity (Schwarz and Seber, 1999) but, in
presence of continuous covariates, the maximum likelihood estimation (MLE) may be
inconsistent or biased (Baker, 1994; Tilling and Sterne, 1999) because the number of
parameters may become close to the number of observations. Usually the continuous
covariates are categorized but stratification is subjective and different categorization may
provide different estimates of the population size (Pollock et al., 1984; Pollock, 2002).

By the multinomial conditional logit model (MCLM), continuous covariates can be
modeled in their original measurement scale (Zwane and Heijden, 2005). For this model
the mathematical derivation of the standard error does not exist and bootstrap inference
is needed in order to obtain an estimate of the confidence interval. The International
working group for disease monitoring and forecasting (1995b) noted that, for all the
models proposed in capture-recapture literature, the distribution of the population size
is skewed. In presence of continuous covariates the bootstrap method is commonly
used to obtain non-parametric confidence intervals (Huggins, 1989; Tilling and Sterne,
1999) but the estimated variance is likely to be smaller than the true variance (Norris
and Pollock, 1996). Schwarz and Seber (1999) showed the equivalence between the stan-
dard Poisson LLM and the MCLM only when a dummy variable for each value of the
continuous covariate is used in the Poisson LLM.

In the present work a new parameterization of the Poisson LLM, allowing to handle
continuous covariates in their original measurement scale, is shown and the analytic
estimate of the asymmetric confidence interval of the population size is derived. The
proposed method was finally compared with the MCLM and evaluated on simulated
and real data sets.

2. PRELIMINARIES AND NOTATIONS

The simplest capture-recapture method assumes the presence of two captures or two lists
and can be set out in a contingency table. The goal is to estimate the number of units
missed in both occasions (n00). The estimation is performed by means of the Petersen
dual-system estimator:

n̂00 =
n10n01

n11
. (1)
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It is a function of the number of individuals caught in both occasions (n11) and the num-
ber of individuals caught in one occasion only (n10 and n01). The total population size
is finally given by: N̂ = n̂00+n10+n01+n11 . For the Petersen estimator the following
assumptions holds:

• the population is closed;

• the chance of being caught or present in a list is constant across individuals or
occasions;

• the two captures are independent.

Usually, the first assumption may be controlled by the researcher performing the sur-
vey in a relatively short time. In contrast, the second and third assumptions relates to
intrinsic characteristics of the individuals belonging to the population and, if this is not
taken into consideration, the estimator given by Equation (1) is biased.

When data presents only two capture occasions and some covariates, which may af-
fect the inclusion probabilities, a commonly used approach is to stratify the population
and estimate the missing individuals in each stratum by the estimator (1). More gener-
ally, when the survey is performed in more than two occasions, it is possible to handle
the dependence between occasions and modelling the heterogeneity of inclusion prob-
abilities using generalized linear models. This class of models has been extensively used
in the epidemiological applications of capture-recapture method.

3. THE POISSON LOG LINEAR MODEL

Capture-recapture data with multiple captures and heterogeneity of inclusion probabil-
ities can be handled in the standard framework of the Poisson LLM (Fienberg, 2002;
Cormack, 1989). Here we describe the case of three captures (Table 1, see Appendix A)
while the generalization to several occasions is straightforward. Data can be set out in
a 3-way contingency table: 000, 100, 010, 001, 110, 101, 011, 111 where 1 means that
the individual has been observed. For example, 010 means that the individual was cap-
tured only in the second occasion, therefore s1 = 0, s2 = 1 and s3 =0. Obviously, the
unknown quantity to estimate is n000, i.e. the number of individuals lost at any of the
three captures.

The Poisson LLM allows to model the logarithm of the expected value of the number
of individuals observed in each capture profile through the following linear equation:

log
�

E
�

ns1 s2 s3

��

=β0+β1 s1+β2 s2+β3 s3+β12 s12+β13 s13+β23 s23, (2)

where s1, s2 and s3 are the indicator variables of the three captures, while s12, s13, and s23
are the two-way interaction terms.

As outlined by Chao (2001), in a capture-recapture experiment performed in three
occasions, the observed profiles are 7 and there is no three-way interaction term, i.e.,
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s123 = 0. Under this model the expected value of n000 is given by E(n000) = exp(β0).
When information about individual characteristics is present, in the simplest case of
a dummy covariate X, the interaction terms between the covariate and each capture
profiles must be added to the above and the resulting model become:

log
�

E
�

ns1 s2 s3

��

=β0+β1 s1+β2 s2+β3 s3+β12 s12+β13 s13+β23 s23+βx x+

+β1x s1x +β2x s2x +β3x s3x +β12x s12x +β13x s13x +β23x s23x , (3)

where s1x , s2x , s3x and s12x , s13x , s23x are all the two and three-way interactions between
sources and the covariate, respectively.

Conditional on the two levels (0 and 1) of the dummy covariate X, the expected
number of individuals missed at any occasion turns out to be E(n0000) = exp(β0) and
E(n0001) = exp(β0+βx ), whereβ0 andβx are the intercepts related to the covariate lev-
els. Therefore, the total expected number of missed individuals is E (n0000) + E (n0001),
and the total population size is obviously obtained adding the total expected number of
missed individuals to the total number of observed individuals. The extension to several
dichotomous covariates is straightforward. Continuous covariates can be instead mod-
elled only using a set of dummy variables for each of them and for each single continuous
value otherwise the MLE of the Poisson LLM is biased (Baker, 1994; Tilling and Sterne,
1999).

4. THE MULTINOMIAL CONDITIONAL LOGIT MODEL

The MCLM can handle continuous covariates in their original measurement scale over-
coming problems related to the MLE. The MCLM or the Bock’s multinomial logit
model are two alternative parameterizations of the same model. They extend the lo-
gistic approach of Huggins (1989) and Alho (2000) from two independent occasions to
several dependent occasions (Zwane and Heijden, 2005). As outlined by Zwane and
Heijden (2005), an individual i (i = 1,2, ..., n) is classified in one of K capture profiles
indexed by k (k = 1,2, ...,K), such that the indicator variable Ik|i = 1 if individual i
falls in the capture profile k and 0 otherwise. The multinomial logit for individual i is
zi = [z1|i , z2|i , ..., zK |i ], imply that the category probabilities for the individual i are

πk|i =
e zk|i

∑K
k=1 e

zk|i
. (4)

When continuous or categorical variables, indexed by h (h = 1,2, .., H ) are present
and collected in a matrix X, the multinomial logits in Z are related to the covariate matrix
X and a design matrix Y by a matrix of regression parameters Λ . The multinomial
logits are decomposed as Z=XΛY. Let the elements of Y be y j k , with j = 1,2, ..., J , the
elements of X be xi h , and the elements of Λ be λh j , where J is the number of lists and
interaction effects. For example, with three lists, each individual has a unique capture



Continuous Covariates in the Poisson Capture-Recapture Log Linear Model 431

profile and the set of all the possible capture profiles is 100, 010, 001, 110, 101, 011,
111 while the vector Ii = [I100|i , I010|i , I001|i , I110|i , I101|i , I011|i , I111|i ], where Iab c |i = 1 if
individual i has capture profile [a, b , c] and Iab c |i = 0 otherwise. If we assume that list 1
and 2, and list 2 and 3 are dependent the Y matrix is given by:













list1 : 1 0 0 1 1 0 1
list2 : 0 1 0 1 0 1 1
list3 : 0 0 1 0 1 1 1
list12 : 0 0 0 1 0 0 1
list23 : 0 0 0 0 0 1 1













.

The elements of Y will be denoted by y j (ab c) rather than y j k , where y j (ab c) is the
element of Y in row j corresponding to capture profile [a, b , c]. The first three rows of
Y refer to the single list effects and the fourth and fifth rows to the interactions of list
1 and 2, and list 2 and 3 respectively. The probabilities that each individual will belong
to one of the 7 capture profiles can be estimated by the MCLM as a function of the
covariate values and the overlapping captures. More precisely, the probability that the
it h individual belongs to the kt h capture profile, is given by:

πk|i =
e
∑H

h=1

∑J
j=1 xi hλ j h y j k

∑K
r=1 e
∑H

h=1

∑J
j=1 xi hλh j y j r

. (5)

The log-likelihood of the MCLM is given by lmu l t =
∑n

i=1
∑K

k=1 Ik|i log(πk|i ) and
the model can be fitted exploiting the similarity of the likelihood function with that of
the stratified proportional hazards model (Zwane and Heijden, 2005; Chen and Lynn,
2001). In the case of three occasions, the individual contribution to the estimate of the
missed numbers is:

ˆm000|i =
ˆπ100|i ˆπ010|i ˆπ001|i ˆπ111|i

ˆπ110|i ˆπ101|i ˆπ011|i
. (6)

Finally, the estimator of the population size is the following:

N̂ =
n
∑

i=1

�

1+ ˆm000|i

�

=
n
∑

i=1

1
1− ˆπ000|i

, (7)

where ˆπ000|i =
ˆm000|i

1+ ˆm000|i
is the probability that individual i is missing in all lists.

5. A NEW PARAMETERIZATION OF THE POISSON CAPTURE-RECAPTURE LOG-
LINEAR MODEL ALLOWING TO USE CONTINUOUS COVARIATES

The MLE of the Poisson LLM with continuous covariates in their original measurement
scale and using the standard parameterization is biased (Baker, 1994; Tilling and Sterne,
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1999). Therefore, when one or more continuous covariates are available, we propose
to use a new parameterization to obtain an overall fit and an estimate of the unknown
population size.

For each observed individual the capture profiles are defined using a dummy vari-
able for each source and the value of the continuous variables in their original measure-
ment scale. For example, in case of three lists (s1, s2, s3) and one continuous covariate
X, each individual can belong to a set of K = 8 possible capture profiles: 000, 100,
010, 001,110, 101, 011, 111, each with his own set of covariates (Table 2). The vector
Ii = [I000|i , I100|i , I010|i , I001|i , I110|i , I101|i , I011|i , I111|i ], where Is1 s2 s3|i = 1 if individual i has
capture profile [s1, s2, s3] and Is1 s2 s3|i = 0 otherwise, is defined. For the capture profile
001, Is1 s2 s3|i = 1 if individual i has the capture profile 001 and Is1 s2 s3|i = 0 otherwise.
The capture indicator vector Is1 s2 s3|i present a missing value for the no-capture profile
000 (I000|i value is missing). Finally, all the two-way interaction terms between sources
(s12, s13, s23), and all the two (s1x , s2x , s3x ) and three-way (s12x , s13x , s23x ) interactions be-
tween sources and the covariate, complete the data matrix. The resulting model is:

log
�

E
�

Is1 s2 s3|i

��

=β0+β1 s1+β2 s2+β3 s3+β12 s12+β13 s13+β23 s23+βx x+

+β1x s1x +β2x s2x +β3x s3x +β12x s12x +β13x s13x +β23x s23x . (8)

When three occasions are present, there are only seven available profiles for each
subject in the MCLM while, in the proposed Poisson LLM, the profiles are eight since
the unknown capture profile (000) is needed. Consequently, the Poisson LLM presents
additional parameters compared to the MCLM, a constant and one parameter for each
covariate. If three occasions and two covariates are present, the model is:

log
�

E
�

Is1 s2 s3|i

��

=β0+β1 s1+β2 s2+β3 s3+β12 s12+β13 s13+β23 s23+

+βx1x1+β1x1
s1x1
+β2x1

s2x1
+β3x1

s3x1
+

+β12x1
s12x1
+β13x1

s13x1
+β23x1

s23x1
+

+βx2x2+β1x2
s1x2
+β2x2

s2x2
+β3x2

s3x2
+

+β12x2
s12x2
+β13x2

s13x2
+β23x2

s23x2
+βx1 x2

sx1 x2
.

(9)

For the no-capture profile (000) of each subject i the model simplify to the logarithm
of the expected number of missed units in i: log

�

E
�

I000|i

��

= β0 +βx1
x1 +βx2

x2 +
βx1 x2

x1x2, that is, to the sum of the constant, the covariates and the interactions effect

between covariates. In this case the explicit expression of the variance of log
�

E
�

I000|i

��
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is:

Var (β0)+ x2
1 Var(βx1

)+ x2
2 Var(βx2

)+ (x1x2)
2Var(βx1 x2

)+

+ 2x1Cov(β0,βx1
)+ 2x2Cov(β0,βx2

)+ 2x1x2Cov(β0,βx1 x2
)+

+ 2x1x2Cov(βx1
,βx2
)++2x1(x1x2)Cov(βx1

,βx1 x2
)+

2x2(x1x2)Cov(βx2
,βx1 x2

).

(10)

More generally, when H covariates are present, the variance of log
�

E
�

I000|i

��

is:

Var
�

log
¦

E
�

I000|i

�©�

=
H+1
∑

h=1

x2
hVar(βh )+

(H+1
2 )
∑

h 6=t

2xh xt Cov(βh ,βt ), (11)

where the covariates are indexed by h (h = 1,2, .., t , .., H + 1).

The confidence interval of log
�

E
�

I000|i

��

is then computed as:

log
�

E
�

I000|i

��

+Zα
Ç

Var
�

log
¦

E
�

I000|i

�©�

,

where, for the 95% confidence interval, Zα = 1.96.

The expected number of missed units in i is E
�

I000|i

�

= e log[E(I000|i)] and the total

expected number of missed units is
∑n

i=1 E
�

I000|i

�

. The asymmetric confidence interval

of the total expected number of missed units (
∑n

i=1 E
�

I000|i

�

) is computed as:

n
∑

i=1

e[log{E(I000|i)}+ZαVar[log{E(I000|i)}]]
1
2

for the upper limit and

n
∑

i=1

e[log{E(I000|i)}−ZαVar[log{E(I000|i)}]]
1
2

for the lower limit.
The total population size and its confidence interval can be finally calculated adding

the number of observed units to the total expected number of missed units. The pa-
rameters of the proposed Poisson regression model can be estimated by the maximum
likelihood using the Newton-Raphson method. The variance-covariance matrix of the
parameters can be estimated by the observed information matrix (OIM), as suggested
by Hardin and Hilbe (2001) in the case of canonical link.
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6. SIMULATION STUDY

A simulation study was conducted to evaluate the performance of the proposed method
to estimate the population size in a closed population and in presence of observed het-
erogeneity. Two datasets A and B with 1000 cases (Table 3) were generated from a pop-
ulation with an expected size of 4000 individuals. Each dataset was composed by three
lists with different levels of dependence and heterogeneity. The dataset A was simulated
to obtain independence between lists and a significant effect of the continuous covariate
while the dataset B presents dependence between the first two lists and a significant ef-
fect of the continuous covariate. For each of the two simulated datasets, the number of
individuals captured from only one source (s1, s2, s3), two sources (s12, s13, s23) and three
sources (s123) are reported in Table 3. More details regarding the construction of these
datasets are reported in Rossi et al. (2010).

For each dataset, a comparison between the proposed Poisson LLM and the MCLM
was made in terms of estimated total population (N) and deviance (D). Furthermore, the
parametric confidence intervals obtained analytically from the proposed Poisson LLM
were compared with the non-parametric confidence intervals obtained by the bootstrap
method. From each of the two simulated dataset 1000 samples of size n=1000 were
extracted with replacement.

For each of these samples the total population size was estimated using the model
selected on the starting dataset by a backward procedure and according to the Akaike
information criterion (AIC). This procedure led to a final distribution of the estimator of
the total population, which was used to produce the non-parametric confidence intervals
(Table 4).

For each of the two simulated data sets the proposed Poisson LLM, selected by the
AIC, estimates exactly the simulated effects and converges to the MCLM along the vari-
able selection process. The population size obtained by the two models were very close
to the expected of 4000 individuals and the difference against the bootstrap confidence
intervals (≈ 1%) and deviance (≈ 0.1%) appear to be negligible.

To investigate the ability of the proposed Poisson LLM to estimate correctly the
population size (N ) and the 95% confidence interval, we compared these estimates with
those obtained using the standard Poisson LLM and the Wald method. First, we com-
pared results obtained on datasets A and B without considering the effect of the contin-
uous covariate in the model and for different sample size (1000, 10000, 50000). In this
case, it is possible to estimate analytically the population size and the 95% C.I. also in
the standard framework of Poisson LLM /Wald method. The equivalence between the
two different types of parameterization of the Poisson LLM is shown in Table 5.

Furthermore, the population size (N ) and the 95% C.I. obtained in closed form by
the standard Poisson LLM and the proposed Poisson LLM were compared to the mean
and the non-parametric 95% confidence interval of the distribution of N obtained by
the bootstrap method. Both the population size and the non-parametric 95% confidence
interval obtained by the Bootstrap method were only slightly different from those esti-
mated analytically, both for the proposed Poisson LLM and the standard Poisson LLM.
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However, such difference decreased significantly with increasing the sample size.
Finally, we compared the 95% C.I. obtained analytically by the proposed procedure

with those obtained by the bootstrap method considering also the effect of the contin-
uous covariate in the model. In this case, the bootstrap non-parametric 95% confidence
intervals were only slightly different from those obtained by the proposed procedure
and these difference decrease significantly increasing the sample size.

7. APPLICATION TO REAL DATASETS

In this section, the proposed Poisson LLM was applied to two datasets regarding four
notification lists of drug addiction users (opiate and cocaine) in the Liguria region:

• public services for drug addiction (s1),

• operational unit for drug addiction at prefectures (s2),

• therapeutic communities (s3),

• hospital discharge records (s4).

Gender and age were also present in the two datasets. The "captured" opiate and co-
caine users were 4825 and 531 respectively. The estimated prevalences were obtained
using all the above 4 sources of notification with sex and age (continuous scale) as co-
variates. Point and 95% confidence interval estimated by the proposed Poisson LLM
are shown in Table 6. The estimated 15-64 years population prevalence of opiate and
cocaine users of the Liguria region in the year 2002 (1002497 individuals), was about
1.3% (95% C.I.: 1.0-1.9) and 1.6% (95% C.I.: 0.7-3.6) respectively. According to simi-
lar studies, addressing the demanding problem of drug addiction within the European
Union (Table 7), the proposed Poisson LLM seems to work well in obtaining a plausible
quantitative evaluation of it.

8. CONCLUSION

In this paper we proposed a new parameterization of the Poisson LLM. The estimation
of the size of a closed population in presence of observed heterogeneity and the ana-
lytical asymmetric confidence interval were shown. Results obtained on simulated and
real datasets suggested that the proposed parameterization of the Poisson LLM allows
to treat continuous covariates in their original measurement scale This allowed us to
overcome problems related to the choice of a correct categorization of continuous co-
variates or the introduction of a large number of dummy variables, which may lead to
inconsistent or biased maximum likelihood estimates (Baker, 1994; Tilling and Sterne,
1999). The observed differences between the Poisson LLM and the MCLM in terms of
goodness of fit and estimated population size appear negligible. The main advantage of
the proposed Poisson LLM over MCLM is the analytical estimation of the confidence
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interval. The bootstrap and the analytical confidence intervals are very similar and tend
to be equivalent by increasing the sample size. The confidence bounds obtained by the
proposed Poisson LLM are preferable to their bootstrap estimation because the latter
can lead to unreasonable confidence limits in case of small datasets. Finally, the estima-
tion obtained by the proposed Poisson LLM on a real dataset showed that the prevalence
of opiate and cocaine users in the Liguria region seems to be consistent with that found
in Inner London and in other European areas (Gemmell et al., 2004; Hickmann et al.,
2004; Hope et al., 2005).

ACKNOWLEDGEMENTS

The authors are very grateful to Professor Luigi Donato for his advice and encourage-
ment and to the Liguria Region for making available data on drug addiction users.

La pubblicazione di questo articolo vuol essere un doveroso omaggio alla memoria
di Giuseppe Rossi, amico e collega, prematuramente scomparso. A lui si deve l’idea alla
base del lavoro la cui lettura auspichiamo serva a ricordare quale sia stata la perdita sia
sotto il profilo umano che scientifico.



Continuous Covariates in the Poisson Capture-Recapture Log Linear Model 437

APPENDIX

A. TABLES

TABLE 1
Representation of a 3 sources capture–recapture data.

S1 S2 S3
0 1

0 0 ? n001
0 1 n010 n011
1 0 n100 n101
1 1 n110 n111

TABLE 2
New parameterization for the Poisson capture-recapture log linear model (LLM), referred to the i-th

subject belonging to the capture profile 001 with covariate value x.

s1 s2 s3 Is1 s2 s3
s12 s13 s23 X s1x s2x s3x s12x s13x s23x

0 0 0 ? 0 0 0 x 0 0 0 0 0 0
0 0 1 1 0 0 0 x 0 0 x 0 0 0
0 1 0 0 0 0 0 x 0 x 0 0 0 0
0 1 1 0 0 0 1 x 0 x x 0 0 x
1 0 0 0 0 0 0 x x 0 0 0 0 0
1 0 1 0 0 1 0 x x 0 x 0 x 0
1 1 0 0 1 0 0 x x x 0 x 0 0
1 1 1 0 1 1 1 x x x x x x x

TABLE 3
Capture profiles of simulated datasets.

Dataset s0 s1 s2 s3 s12 s13 s23 s123
(000) (100) (010) (001) (110) (101) (011) (111)

A ? 314 307 312 40 35 42 11
B ? 233 321 312 120 29 41 18



438 G. Rossi et al.

TABLE 4
Mean deviance (D), analytically estimated population size (N) and 95% confidence interval (C.I.),

bootstrap non-parametric 95% confidence interval (C.I.) obtained on simulated datasets for the
proposed Poisson LLM and MCLM.

Dataset AIC Type of D N Proposed Bootstrap
selected model model 95% C.I. 95% C.I.

s0 s1 s2 s3
s0x s1x s2x s3x LLM 3144 3824 3092-4879 3257-4707

A
s1 s2 s3

s1x s2x s3x MCLM 3143 3843 3092-4879 3250-4760

s0 s1 s2 s3
s0x s1x s2x s3x LLM 3378 3983 3170-5153 3353 - 4967

B
s1 s2 s3

s1x s2x s3x MCLM 3378 4001 3170-5153 3368 - 5009

LLM=Poisson log linear model, MCLM=multinomial conditional logit model, N=estimated population size on the
starting datasets, D=mean of the deviance over the bootstrapped datasets.
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2842/3968

3336
2842/3968

3356
2851/3968

0.59
0.32

/
0.01

B
s0

s1
s2

s3
s12

10000
33363

31677/35196
33363

31677/35196
33370

31748/35200
0.02

0.26
/

0.01
50000

166813
162939/170824

166813
162939/170824

166900
163253/170790

0.05
0.19

/
-0.02

s0
s1

s2
s3

s0x
1000

3823
3092/4879

3867
3257/4707

1.11
5.35

/
-2.12

A
s1x

s2x
s3x

10000
38245

35645/41162
38250

36319/40288
0.01

1.89
/

-0.71
yes

50000
191225

185225-197541
191250

186383/196132
0.01

0.63
/

-3.61
s0

s1
s2

s3
s12

s0x
1000

3934
3027/5367

4000
3244/5060

1.69
5.74

/
-1.49

B
s1x

s2x
s3x

s12x
10000

39336
36028/43157

39370
36666/42332

0.09
1.46

/
-0.68

50000
196678

189024/204842
196700

190497/202962
0.01

0.78
/

0.92
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TABLE 6
Analytically estimated population size (N) and 95% confidence interval (C.I.) obtained on the real

dataset (Liguria region 2002) by the proposed Poisson LLM.

Type of drug N 95% C.I.
Opiate 12758 9589 - 18049
Cocaine 16759 4391 - 69163

TABLE 7
Estimated prevalence (x 100) in other European countries / towns.

Type of drug Opiate Cocaine

Country/Town Prevalence Years Prevalence Years

World Drug Report 2006 (15-64 years)
Italy 0.8 2004 1.02 2003
UK 1.09 2001 2.04 2003
Spain 2.07 2003

Hope et al. Addiction 2005 (15-54 years)
London 1.2 - 1.6 2000-2001 1.5 - 1.9 2000-2001
Brighton 2
Liverpool 1.05
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SUMMARY

The capture-recapture method is widely used by epidemiologists to estimate the size of hidden
populations using incomplete and overlapping lists of subjects. Closed populations, heterogeneity
of inclusion probabilities and dependence between lists are taken into consideration in this work.
The main objective is to propose a new parameterization for the Poisson log linear odel (LLM)
to treat continuous covariates in their original measurement scale. The analytic estimate of the
confidence bounds of the hidden population is also provided. Proposed model was applied to
simulated and real capture-recapture data and compared with the multinomial conditional logit
model (MCLM). The proposed model is very similar to the MCLM in dealing with continuous
covariates and the analytic confidence interval performs better than the bootstrap estimate in case
of small sample size.

Keywords: Capture-recapture; Closed population; Continuous covariates; Poisson log-linear model;
Multinomial conditional logit model.


