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1. INTRODUCTION

Probability distributions are very useful in describing real world phenomena. Due to
this, it is a fundamental practice to obtain distributions which best describe a given data.
Though there is a rich collection of distributions to which data can be modeled with,
these distributions sometimes fail to capture all the variations in the data. Because of
this, there is the need for the development of new distributions, the extension and gen-
eralization of already existing distributions. These usually result in more flexible dis-
tributions which best describe real world scenarios. The Lomax distribution has had
extensive applications in many fields, and hence has had several extensions and gener-
alizations. Some of these include the transmuted Weibull Lomax distribution by Afify
et al. (2015), beta exponentiated Lomax distribution by Mead (2016), Gompertz Lomax
distribution by Oguntunde et al. (2017) and recently a generator of odd Lomax distri-
butions by Cordeiro et al. (2019).

In the development of new distributions, several techniques have been developed and
employed by different researchers. In this study, the method proposed by Alzaatreh et al.
(2013) is used to develop a new family of distributions using the Lomax distribution.
The new distribution adds three extra parameters to a baseline distribution.

Given a random variable X with a probability density function (PDF) f (x) and a
cumulative distribution function (CDF) F (x), and also let T be a continuous random
variable with PDF r (t ) defined on the support [a, b ]. Alzaatreh et al. (2013) defined a
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new family of distributions as

F (x) =
∫ W (F (x))

a
r (t )d t , (1)

where W (F (x)) ∈ [a, b ] is differentiable and monotonically non-decreasing. Further-
more, W (F (x)) → a as x → −∞ and W (F (x)) → b as x → +∞. This method of
generating new distributions has been used recently by Haq and Elgarhy (2018) to de-
velop the odd Fréchet-G family of distributions and by Nasiru (2018) to develop the
extended odd Fréchet-G family of distributions, among others. Cordeiro et al. (2019)
introduced the odd Lomax families of distributions by considering the random variable
T to follow the Lomax distribution. In this study, the odds of a baseline distribution
with an extra shape parameter is considered with T following the Lomax distribution.

The rest of the paper is organized as follows: In Section 2, the CDF, PDF, quan-
tile function and hazard rate function of the new family of distributions are presented.
Section 3 presents the mixture representation of the density function of the family of
distributions. Section 4 presents four special distributions of the family of distributions.
In Section 5, some of the properties of the family of distributions are given. These in-
clude the moments, moment generating function, mean residual, mean waiting time
and the order statistics of the family of distributions. Section 6 presents the parameter
estimation and Section 7 presents the assessment of the parameters of the family of dis-
tributions using Monte Carlo simulations. Section 8 presents applications of the family
of distributions to two datasets to illustrate its flexibility and usefulness. The conclusion
of the study is presented in Section 9.

2. THE NEW FAMILY OF DISTRIBUTIONS

In this section, the odd Lomax family of distributions is developed in the framework of
Eq. (1). Consider a random variable T following the Lomax distribution with PDF and
CDF defined by r (t ) = αθα(θ+ t )−(α+1) and R(t ) = 1−θα(θ+ t )−α, t > 0,α > 0,θ > 0,
respectively. Given a baseline distribution G(x;ω)β, whereω is a vector of parameters,
then the function W (F (x)) in Eq. (1) can be defined as the odds ratio of the distribution
as G(x;ω)β

1−G(x;ω)β . Substituting the odds ratio and the density r (t ) into Eq. (1) gives

F (x) = αθα
∫

G(x;ω)β

(1−G(x;ω)β)

0
(θ+ t )−(α+1)d t . (2)

Solving Eq. (2) gives the CDF of the new family of distributions as

F (x) = 1−
�

θ(1−G(x;ω)β)
θ+(1−θ)G(x;ω)β

�α

, (3)
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for x ∈R, where α > 0 and β> 0 are extra shape parameters and θ > 0 is an extra scale
parameter. Differentiating Eq. (3) gives the PDF of the new family of distributions for
x ∈R,α > 0,β> 0 and θ > 0 as

f (x) =
αβθα g (x;ω)G(x;ω)β−1

(1−G(x;ω)β)1−α
(θ+(1−θ)G(x;ω)β)−(α+1). (4)

The new family of distributions will hence forth be referred to as the extended odd
Lomax-G (EOLxG) distribution. A random variable X with a PDF defined by Eq. (4)
is therefore denoted by X ∼ EOLxG(x;ω).

Adopting the interpretation of the CDF of the odd Weibull and extended odd Fréchet
distributions by Cooray (2006) and Nasiru (2018), respectively, the interpretation of the
CDF of the EOLxG family of distributions is given as follows. Let the random variable
Z follow a continuous distribution with CDF G(x;ω)β, the odds that a failure time will
not exceed x is given by G(x;ω)β

1−G(x;ω)β . If the randomness or variability of the odds of the
random variable Z is defined by the Lomax distribution, then the distribution of Z is as
given as

FZ (x) = P(Z ≤ x) = P
�

X ≤
G(x;ω)β

1−G(x;ω)β

�

= FX

�

G(x;ω)β

1−G(x;ω)β

�

.

To generate random numbers from the EOLxG family of distributions, the quantile
function of EOLxG is necessary. The quantile function of a random variable from the
EOLxG family of distributions is obtained as the inverse function of the CDF given in
Eq. (3). Thus, the quantile function is given by

Q(u) =G−1

¨

h

�

θ
�

(1− u)−
1
α − 1

��−1
+ 1

i− 1
β

«

, u ∈ [0,1], (5)

where G−1(·) is the inverse function of the CDF of the baseline distribution.
The quantile function is also useful in obtaining the skewness and kurtosis measures,

especially when the moments of the distribution do not exist. These measures can be
computed using Galton’s skewness and Moor’s kurtosis measures, given respectively as

B =
Q
�

6
8

�

+Q
�

2
8

�

− 2Q
�

4
8

�

Q
�

6
8

�

−Q
�

2
8

� andM =
Q
�

7
8

�

−Q
�

5
8

�

+Q
�

3
8

�

−Q
�

1
8

�

Q
�

6
8

�

−Q
�

2
8

� .

The hazard rate function of the family of distributions is given by

h(x) =
αβg (x;ω)G(x;ω)β−1

(1−G(x;ω)β)(θ+(1−θ)G(x;ω)β)
, x ∈R. (6)

REMARK 1. Whenβ= 1, we obtain the odd Lomax family of distributions by Cordeiro
et al. (2019).
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3. MIXTURE REPRESENTATION

The mixture representation of the EOLxG density is given in this section. The density
function in Eq. (4) can be re-written as

f (x) =
αβθ−1 g (x;ω)G(x;ω)β−1(1−G(x;ω)β)α−1

�

1+(θ−1− 1)G(x;ω)β
�(α+1)

. (7)

Using the generalized binomial expansions given as

(1+ z)−n =
∞
∑

i=0

�

n+ i − 1
i

�

(−1)i z i and (1− z)n =
∞
∑

i=0

�

n
i

�

(−1)i z i

for | z |< 1, then we have

(1−G(x;ω)β)α−1 =
∞
∑

i=0

�

α− 1
i

�

(−1)i G(x;ω)βi (8)

and

(1+(θ−1− 1)G(x;ω)β)−(α+1) =
∞
∑

j=0

�

α+ j
j

�

(−1) j (θ−1− 1) j G(x;ω)β j . (9)

Substituting Eq. (8) and Eq. (9) into Eq. (7) gives the mixture representation as

f (x) =
αβ

θ

∞
∑

i=0

∞
∑

j=0

ϕi j g (x;ω)G(x;ω)β(i+ j+1)−1, (10)

where ϕi j =
�

α− 1
i

��

α+ j
j

�

(−1)i+ j (θ−1−1) j . Alternatively, the density function can

be represented as

f (x) =
αβ

θ

∞
∑

i=0

∞
∑

j=0

ϕ∗i jκi+ j+1(x), (11)

where ϕ∗i j =
ϕi j

β(i+ j+1) and κi+ j+1 = β(i + j + 1)g (x;ω)G(x;ω)β(i+ j+1). κi+ j+1 is the
exponentiated-G (Exp-G) class density function with power parameterβ(i+ j+1). The
Exp-G density can be used to obtain some of the properties of the new distribution.

4. SOME SPECIAL DISTRIBUTIONS

4.1. Extended odd Lomax-Weibull (EOLxW) distribution

Suppose that the baseline distribution is defined as the Weibull distribution with CDF
and PDF for x > 0 andλ > 0,σ > 0 defined by G(x) = 1−e−λxσ and g (x) = λσ xσ−1e−λxσ ,
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respectively. The PDF and hazard functions of EOLxW distribution are obtained by
substituting the CDF and PDF of the Weibull distribution into Eq. (4) and Eq. (6),
respectively. This gives the following PDF and CDF for x > 0 and α > 0,β > 0,θ >
0,λ > 0,σ > 0, respectively as

f (x) =
αβθαλσ xσ−1e−λxσ

�

1− e−λxσ
�β−1

�

θ+(1−θ)(1− e−λxσ )β
�(α+1)

�

1−
�

1− e−λxσ
�β
�α−1

and

F (x) = 1−







θ
�

1−
�

1− e−λxσ
�β
�

θ+(1−θ) [1− e−λxσ ]β







α

.

Figure 1(a) and Figure 1(b) show the plots for some parameter values indicating pos-
sible shapes of the PDF and hazard rate function of the EOLxW distribution. It can
be observed that the density function can assume different shapes including decreasing,
right skewed and approximately symmetric shapes. Also, it can be observed that the haz-
ard rate function exhibit decreasing, increasing and up-side down bathtub shapes among
others.
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Figure 1 – Plots of the density and hazard functions of EOLxW for some possible parameter values.
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4.2. Extended odd Lomax-Lomax (EOLxLx) distribution

If we consider the baseline distribution to follow the Lomax distribution with PDF and
CDF given as g (x) = δσδ (σ + x)−(δ+1) and G(x) = 1− σδ (σ + x)−δ for x > 0 and
σ > 0,δ > 0 respectively, we obtain EOLxLx distribution, with its PDF and CDF
functions given respectively as

f (x) =
αβθαδσδ (σ + x)−(δ+1)

�

1−σδ (σ + x)−δ
�β−1

�

1−
�

1−σδ (σ + x)−δ
�β
�1−α�

θ+(1−θ)
�

1−σδ (σ + x)−δ
�β
�α+1

and

F (x) = 1−







θ
�

1−
�

1−σδ (σ + x)−δ
�β
�

θ+(1−θ) [1−σδ (σ + x)−δ]β







α

.

Figure 2(a) and Figure 2(b) show different possible shapes for different parameter
values of the density and hazard rate functions plots of the EOLxLx distribution, re-
spectively. The density and hazard rate functions exhibit different shapes indicating the
ability of EOLxLx to model a range of datasets.
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Figure 2 – Plot of the density and hazard functions of EOLxLx for some possible parameter values.
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4.3. Extended odd Lomax-Burr XII (EOLxB) distribution

Again, if the we consider the Burr XII distribution as the baseline distribution with its
PDF and CDF defined for x > 0 and τ > 0,γ > 0,ξ > 0 as g (x) = τγξ −γ xγ−1(1+
(x/ξ )γ )−(τ+1) and G(x) = 1− (1+(x/ξ )γ )−τ , respectively, we obtain the EOLxB distri-
bution. The PDF and CDF of the EOLxB distribution are given respectively as

f (x) =
αβθατγξ −γ xγ−1

�

1+( x
ξ )
γ
�−(τ+1)

�

1−
�

1−
�

1+( x
ξ )
γ
�−τ�β

�α−1

�

1−
�

1+( x
ξ )
γ
�−τ�1−β�

θ+(1−θ)
�

1−
�

1+( x
ξ )
γ
�−τ�β

�α+1

and

F (x) = 1−







θ
�

1−
�

1− (1+( x
ξ )
γ )−τ

�β
�

θ+(1−θ)
�

1− (1+( x
ξ )
γ )−τ

�β







α

.

The density and hazard rate functions plots of the EOLxB distribution for some
parameter values are shown in Figure 3(a) and Figure 3(b) respectively. The density
function exhibit right skewed, left skewed, decreasing and approximately symmetric
shapes. Also, the hazard rate function exhibit different shapes for selected parameter
values.
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Figure 3 – Plot of the density and hazard functions of EOLxB for some possible parameter values.



338 A. G. Abubakari et al.

4.4. Extended odd Lomax-Paralogistic (EOLxPL) distribution

Finally, suppose the Paralogistic distribution is considered as the baseline distribution
with PDF and CDF given, for x > 0 and τ > 0,σ > 0, as g (x) = τ2σ−τx−(τ+1)(1+
(x/σ)τ)−(τ+1) and G(x) = 1− (1+(x/σ)τ)−τ , respectively, we obtain the EOLxPL dis-
tribution with PDF and CDF given respectively as

f (x) =
αβθατ2σ−τx−(τ+1)

�

1+( x
σ )
τ
�−(τ+1)�

1−
�

1+( x
σ )
τ
�−τ�β−1

�

1−
�

1−
�

1+( x
σ )
τ
�−τ�β

�1−α�

θ+(1−θ)
�

1−
�

1+( x
σ )
τ
�−τ�β

�α+1

and

F (x) = 1−







θ
�

1−
�

1− (1+( x
σ )
τ)−τ

�β
�

θ+(1−θ)
�

1− (1+( x
σ )τ)−τ

�β







α

.

Figure 4(a) and Figure 4(b) show the plots for various parameter values for the PDF
and hazard rate function, respectively, of the EOLxPL distribution. The density func-
tion can assume right skewed, left skewed and decreasing shapes among other shapes.
The hazard rate function exhibit different non-monotonic failure rate shapes.
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Figure 4 – Plot of the density and hazard functions of EOLxPL for some possible parameter values.

5. STATISTICAL PROPERTIES

The statistical properties of EOLxG family of distributions are obtained in this section.
These include the moments, moment generating function, the mean residual life, mean
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waiting time and order statistics.

5.1. Moments

The moments of a distribution are useful in estimating some key measures of a distri-
bution including the central tendencies and dispersions.

The r th non-central moment of a distribution with PDF f (x), by definition, is given
by

E[X r ] =
∫ ∞

−∞
x r f (x)d x. (12)

Substituting Eq. (7) into Eq. (12) gives the non-central moment of the EOLxG
family of distributions as

E[X r ] =
αβ

θ

∞
∑

i=0

∞
∑

j=0

ϕi j$i+ j+1(x), (13)

where $i+ j+(x) =
∫∞
−∞ x r g (x;ω)G(x;ω)β(i+ j+1)−1d x. When r = 1 in Eq. (13), we

obtain E[X ] =µ.
Also, the incomplete moment of a random variable X is defined as

Mr (t ) =
∫ t

−∞
x r f (x)d x. (14)

Substituting Eq. (7) into Eq. (14) gives the incomplete moment of the EOLxG family
of distributions as

Mr (t ) =
αβ

θ

∞
∑

i=0

∞
∑

j=0

ϕi j$
∗
i+ j+1(t ), (15)

where$∗i+ j+(t ) =
∫ t
−∞ x r g (x;ω)G(x;ω)β(i+ j+1)−1d x.

5.2. Moment generating function (MGF)

The moment generating function (MGF) of a distribution, by definition, is given as

MX (t ) = E[e tX ]. (16)

Using the Tailor expansion of e tX , the MGF can be written as

MX (t ) =
∞
∑

r=0

t r

r !
E[X r ]. (17)
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Substituting Eq. (7) into (17) gives the MGF of the EOLxG family of distributions
as

MX (t ) =
αβ

θ

∞
∑

r=0

∞
∑

i=0

∞
∑

j=0

t r

r !
ϕi j$i+ j+1(x). (18)

5.3. Mean residual life and mean waiting time

The mean residual life of a random variable X , by definition, is given by

M ∗(x) = E [X − x|X > x] =
1

S(X )

�

E(X )−
∫ x

−∞
t f (t )d t

�

− x, (19)

where S(X ) = 1− F (X ), E(X ) is the first non-central moment of the random variable
X and

∫ x
−∞ t f (t )d t is the first incomplete moment. Thus, the mean residual life for the

EOLxG distribution is obtained by substituting Eq. (13) and Eq. (15), with r = 1 in
both cases, into Eq. (19). This gives

M ∗(x) =
αβ

θ [1− F (X )]





∞
∑

i=0

∞
∑

j=0

ϕi j$i+ j+1(x)−
∞
∑

i=0

∞
∑

j=0

ϕi j$
∗
i+ j+1(x)



− x. (20)

Also, mean waiting time is defined as

M (x) = x − 1
F (x)

∫ x

−∞
t f (t )d t .

Substituting the first incomplete moment of the EOLxG family of distributions into
the definition gives the mean waiting time of the distributions as

M (x) = x −
αβ

θF (x)

∞
∑

i=0

∞
∑

j=0

ϕi j$
∗
i+ j+1(x).

5.4. Order statistics

Let X1,X2, . . . ,Xn be a sample of size n from the EOLxG distribution and X1:n ≤X2:n ≤
· · · ≤Xn:n denote the ordered statistics of the sample. The PDF of the i th order statistic,
denoted by fi :n(x), is defined as

fi :n(x) =
n!

(i − 1)!(n− i)!
[F (x)]i−1[1− F (x)]n−i f (x). (21)

But [1− F (x)]n−i =
n−i
∑

k=0
(−1)k

�

n− i
k

�

[F (x)]k . Therefore, Eq. (21) becomes

fi :n(x) =
n!

(i − 1)!(n− i)!
f (x)

n−i
∑

k=0

(−1)k
�

n− i
k

�

[F (x)]k+i−1. (22)
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Substituting the CDF and PDF given by Eq. (3) and Eq. (4), respectively, into Eq.
(22) gives the PDF of the i th order statistic as

fi :n(x) =
αβθα g (x;ω)G(x;ω)β−1(1−G(x;ω)β)

α−1
n!

�

θ+(1−θ)G(x;ω)β
�α+1
(i − 1)!(n− i)!

×
n−i
∑

j=0

(−1) j
�

n− i
k

�



1−





θ
�

1−G(x;ω)β
�

θ+(1−θ)G(x;ω)β





α



i+ j−1

. (23)

The PDF of first order statistic is defined as

f1:n(x) = n[1− F (x)]n−1 f (x). (24)

Again, substituting Eq. (3) and Eq. (4) into (24) gives the PDF as

f1:n(x) = αβθ
αn g (x;ω)G(x;ω)β−1n

�

1−G(x;ω)β
�αn−1

�

θ+(1−θ)G(x;ω)β
�αn+1 . (25)

Furthermore, the PDF of the nth order statistic is defined by

fn:n(x) = n[F (x)]n−1 f (x). (26)

Using the PDF and CDF of the EOLxG family of distributions, the PDF of the nth
order statistic is defined as

fn:n(x) =
αβθα g (x;ω)G(x;ω)β−1n
�

θ+(1−θ)G(x;ω)β
�α+1

�

1−G(x;ω)β
�α−1

×



1−





θ
�

1−G(x;ω)β
�

θ+(1−θ)G(x;ω)β





α



n−1

. (27)

6. PARAMETER ESTIMATION

Maximum likelihood method is used for the parameter estimation of the EOLxG fam-
ily of distributions. Suppose X1,X2, . . . ,Xn are n random samples from the EOLxG
distribution, then the total log-likelihood function, given the p × 1 parameter vector
ψ= (α,β,θ,ω)T , is given by

`(x) = n log [αβθα]+
n
∑

i=1

log [g (xi ;ω)]− (α+ 1)
n
∑

i=1

log
�

θ+(1−θ)G(xi ;ω)
β
�

+(α− 1)
n
∑

i=1

log
�

1−G(xi ;ω)
β
�

+(β− 1)
n
∑

i=1

log [G(xi ;ω)]. (28)
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The log-likelihood function given in Eq. (28) is differentiated with respect to each

parameter to obtain the score function, U (ψ) =
�

∂ `(x)
∂ α , ∂ `(x)∂ β , ∂ `(x)∂ θ , ∂ `(x)∂ ω

�T
as follows

∂ l (x)
∂ α

=
n
α
+ n logθ+

n
∑

i=1

log
�

1−G(xi ;ω)
β
�

−
n
∑

i=1

log
�

θ+(1−θ)G(xi ;ω)
β
�

,

∂ l (x)
∂ β

=
n
β
+

n
∑

i=1

log [G(xi ;ω)]+β(α− 1)
n
∑

i=1

g (xi ;ω)G(xi ;ω)
β−1

�

1−G(xi ;ω)
β
�

−β(α+ 1)(1−θ)
n
∑

i=1

g (xi ;ω)G(xi ;ω)
β−1

�

θ+(1−θ)G(xi ;ω)
β
� ,

∂ l (x)
∂ θ

=
nα
θ
+(α+ 1)

n
∑

i=1

�

1−G(xi ;ω)
β
�

�

θ+(1−θ)G(xi ;ω)
β
� ,

∂ l (x)
∂ ω

=
n
∑

i=1

g ′(xi ;ω)
g (xi ;ω)

+ (β− 1)
n
∑

i=1

G′(xi ;ω)
G(xi ;ω)

−β(α− 1)
n
∑

i=1

g (xi ;ω)G(xi ;ω)
β−1

�

1−G(xi ;ω)
β
�

−β(α+ 1)(1−θ)
n
∑

i=1

g (xi ;ω)G(xi ;ω)
β−1

�

θ+(1−θ)G(xi ;ω)
β
� ,

where G′(x;ω) and g ′(x;ω)means the derivative of the functions G(x;ω) and g (x;ω)
with respect toω respectively.

The maximum likelihood estimates of the parameters are obtained by equating the
score function to zero and numerically solving the system of equations. To achieve this,
it is convenient to use non-linear methods of optimization, such as the quasi-Newton al-
gorithm. In this study, R (the mle2 function) is used to achieve this. The p× p observed
information matrix J (ψ) can be used for the interval estimation of the parameters of
the distribution. When the standard likelihood conditions are satisfied for the EOLxG
family of distributions, with n → ∞, the distribution of bψ can be approximated by
the multivariate normal N4(bψ, J−1(bψ)), where J (bψ) is the expected information matrix.
N4(bψ, J−1(bψ)) can be used to construct an approximate confidence interval for the pa-
rameters of the EOLxG family of distributions.
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7. SIMULATION

In this section, Monte Carlo simulations are performed to assess the accuracy and con-
sistency of the maximum likelihood estimators of the new distribution. For illustrative
purposes, the EOLxW distribution is considered. The following procedure is used:

• The quantile function in Eq. (5) is used to generate random samples from the
distribution. This is done by substituting u ∼ U (0,1) into the quantile function
for sample sizes n = 50,100,250,400 and 600.

• This is repeated for N = 3000 times for each sample size and for two (2) sets of
parameters: α = 0.2,β = 0.2,θ = 0.9,λ = 2.6 and σ = 1.8; α = 0.2,β = 0.3,θ =
0.6,λ= 1.5 and σ = 1.5.

• For each experiment, the average estimate (AE), the average bias (AB) and root
mean square error (RMSE) for the estimators are computed. For the parameter
estimates, bψ= (bα, bβ, bλ, bσ)′, the following formulas were used to compute the mea-
sures above:

AV=
1
N

N
∑

i=1

bψ, AB=
1
N

N
∑

i=1

(ψ−ψ) and RMSE=

√

√

√

√

1
N

N
∑

i=1

(bψ−ψ)
2
,

where ψ= (α,β,λ,σ)′.

Table 1 shows the results for the first set of parameters. It can be observed that as
the sample size increase, the average estimates tend to be closer to the true parameters,
the RMSE and bias also tend to reduce with increasing sample size for each parameter.
A similar trend can be observed for the second set of parameters in Table 2. This shows
the accuracy and consistency of the estimators of the EOLxW distribution.

The asymptotic distribution of the parameters of the EOLxW distribution is inves-
tigated via Monte Carlo simulations. For parameter values (α,β,θ,λ,σ) = (0.9,β =
0.9,θ = 1.5,λ= 2.1,σ = 2.5), random samples of size 100 are simulated and the param-
eter estimates obtained. This is repeated 1000 times. The histograms of the parameter
estimates are shown in Figure 5. It can be observed that the distributions of the param-
eter estimates can be approximated to the normal distribution with sufficiently large
number of simulations.
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TABLE 1
Simulation results for (α,β,θ,λ,σ) = (0.2,0.2,0.9,2.6,1.8).

Parameter Sample size (n) AV AB RMSE

α= 0.2

50 0.242 0.042 0.175
100 0.228 0.028 0.112
250 0.210 0.010 0.054
400 0.207 0.007 0.040
600 0.204 0.004 0.017

β= 0.2

50 0.253 0.053 0.463
100 0.226 0.026 0.082
250 0.216 0.016 0.068
400 0.214 0.013 0.060
600 0.209 0.009 0.052

θ= 0.9

50 1.036 0.136 2.137
100 0.917 0.017 0.598
250 0.900 0.000 0.197
400 0.908 0.008 0.126
600 0.905 0.005 0.072

λ= 2.6

50 2.386 -0.213 0.957
100 2.448 -0.152 0.627
250 2.568 -0.032 0.246
400 2.593 -0.007 0.146
600 2.598 -0.002 0.102

σ = 1.5

50 2.044 0.244 0.612
100 1.879 0.079 0.295
250 1.805 0.005 0.124
400 1.791 -0.009 0.089
600 1.791 -0.009 0.078
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TABLE 2
Simulation results for (α,β,θ,λ,σ) = (0.2,0.3,0.6,1.5,1.5).

Parameter Sample size (n) AV AB RMSE

α= 0.2

50 0.279 0.079 0.258
100 0.278 0.078 0.219
250 0.234 0.034 0.128
400 0.215 0.015 0.074
600 0.210 0.010 0.054

β= 0.2

50 0.406 0.106 2.193
100 0.337 0.037 0.153
250 0.320 0.020 0.097
400 0.313 0.013 0.074
600 0.311 0.011 0.065

θ= 0.9

50 0.712 0.112 1.937
100 0.653 0.053 0.454
250 0.624 0.024 0.217
400 0.613 0.013 0.122
600 0.611 0.011 0.086

λ= 2.6

50 1.329 -0.171 0.749
100 1.349 -0.151 0.527
250 1.435 -0.065 0.298
400 1.477 -0.023 0.176
600 1.491 -0.009 0.126

σ = 1.5

50 1.826 0.326 0.686
100 1.659 0.159 0.393
250 1.534 0.034 0.178
400 1.509 0.009 0.120
600 1.497 -0.003 0.077
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8. APPLICATIONS

In this section, the flexibility and usefulness of the EOLxG family of distributions are il-
lustrated by using two different datasets. The performance of the EOLxLx and EOLxPL
distributions are compared with other distributions. Generally, the larger the number of
parameters of a distribution, the better fit it is likely to provide to a given data set. Hence,
the maximum likelihood estimates of the distributions are computed with goodness-of-
fit measures, some of which penalize the model for large number of parameters. The
goodness-of-fit measures computed for each distribution include Akaike information
criterion (AIC), Bayesian information criterion (BIC), Kolmogrove-Smirnov (K-S) and
Anderson-Darling (A-D) statistics. The distribution with the least of these measures is
considered the best.

8.1. Application 1: Time-to-failure of turbocharger data

The first data set considered is the time-to-failure (103h) rate of turbocharger of a type
of engine. The data set consists of 40 observations and can be found in Xu et al. (2003).
The fit of EOLxPL is compared with Kumaraswamy transmuted log-logistic (KwTLL)
(Afify et al., 2016), odd Lomax-log-logistic (OLxLL) (Cordeiro et al., 2019) and Burr X
Lomax (BXLx) (Yousof et al., 2017). The density functions of KwTLL, OLxLL and
BXLx distributions are given respectively as follows:

f (x) = abβα−βxβ−1
�

1+
� x
α

�β�−2�

1−
�

1+
� x
α

�β�−1�α−1

×
�

1−λ
�

1− 2
�

1+
� x
α

�β�−1���

1+λ
�

1+
� x
α

�β�−1�α−1

×
�

1−
�

1+λ
�

1+
� x
α

�β�−1��α�

1−
�

1+
� x
α

�β�−1�b−1

,

x > 0, |λ| ≤ 1,α > 0,β> 0,a > 0, b > 0,

f (x) =
αθαba−b x b−1

�

1+
� x

a

�b�−2

h

1−
�

1−
�

1+
� x
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�b�−1�i2






θ+

1−
�

1+
� x
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�b�−1

1−
�

1−
�

1+
� x
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�b�−1�







−(α+1)

,

x > 0,α > 0,θ > 0,λ > 0,σ > 0

and

f (x) =
2θα
β

�

1+
x
β

�α−1��

1+
x
β

�α

− 1
�

exp

¨

−
��

1+
x
β

�α

− 1
�2«

×
¨

exp

�

−
��

1+
x
β

�α

− 1
�2�«θ−1

, x > 0,β> 0,θ > 0.
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Table 3 shows the maximum likelihood estimates of EOLxPL, KwTLL, OLxLL and
BXLx distributions with their corresponding standard errors in brackets. It also shows
the model selection criteria. It can be observed that the EOLxPL distribution has the
least values for the model selection criteria. This suggests that EOLxPL outperforms
KwTLL, OLxLL and BXLx distributions.

TABLE 3
Model comparison for turbochargers failure (103h).

Model Parameter estimates -2` AIC BIC K-S A-D

EOLxPL

α= 0.483 (0.436)

155.998 165.998 174.442 0.052 0.098

β= 0.151 (0.073)
θ= 0.474 (0.777)
τ = 17.419 (2.815)
σ = 9.487 (0.755)

KwTLL

λ= 3.362 (0.294)

166.217 176.217 184.661 0.115 0.783

α= 18.734 (0.022)
β= 32.956 (0.002)
a = 264.060 (0.001)
b = 32.908 (0.030)

OLxLL

α= 19.867 (0.002)

165.861 173.861 180.616 0.109 0.692
θ= 0.007 (0.007)
λ= 59.777 (0.001)
σ = 3.701 (0.509)

BXLx

α= 0.008 (0.043)
164.906 170.905 175.973 0.110 0.110β= 0.001 (0.048)

θ= 1.556 (0.032)

Figure 6 shows the histogram of the turbocharger failures with the densities of the
fitted distributions. The plot shows that the EOLxPL distribution tend to describe the
shape of the data better than the KwTLL, OLxLL and BXLx distributions.

Figure 7 also shows the P-P plots for the fitted distributions. The plots show that
the EOLxPL distribution best describes the data.
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Figure 6 – The estimated densities of EOLxPL, KwTLL, OLxLL and OP distributions.
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Figure 7 – P-P plots of EOLxPL, KwTLL, OLxLL and OP distributions.
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8.2. Application 2: Fatigue time of 101 6061-T6 aluminum coupons

The second data set consists of the fatigue time of 101 6061-T6 aluminum coupons cut
parallel to the direction of rolling and oscillated at 18 cycles per second. The data
set has been analyzed my many authors and can be found in Birnbaum and Saunders
(1969). The performance of EOLxLx is compared with beta exponentiated Lomax
(BELx) (Mead, 2016), extended odd Fréchet-Nadarajah-Haghighi (EOFNH) (Nasiru,
2018) and the odd Lomax-Weibull (OLxW) (Cordeiro et al., 2019) distributions. The
BELx, EOFNH and OLxW density functions are given respectively as follows:

f (x) =
βθλ

B(a, b )
(1+λx)−(θ+1)

�

1− (1+λx)−θ
�aβ−1

n

1−
�

1− (1+λx)−θ
�β
ob−1

,

x > 0,a > 0, b > 0,λ > 0,θ > 0,β> 0,

f (x) =
αβλθ(1+λx)β−1e(1−(1+λx)β)e

−
�

�

1−e(1−(1+λx)β)
�−α

−1

�θ

�

1− e(1−(1+λx)β)
�αθ+1h

1−
�

1− e(1−(1+λx)β)
�αi1−θ

,

x > 0,α > 0,β> 0,λ > 0,θ > 0,

and

f (x) =
αθασλσ xσ−1e−λxσ

[1− (1− e−λxσ )]2

�

θ+
1− e−λxσ

1− (1− e−λxσ )

�−(α+1)

.

x > 0,α > 0,θ > 0,λ > 0,σ > 0.

The maximum likelihood estimates of EOLxLx, BELx, EOFNH and OLxW distri-
butions with their corresponding standard errors in brackets and model selection crite-
ria are shown Table 4. It can be observed that the EOLxLx distribution has the least
of the measures. This indicates that the EOLxLx distribution outperforms the BELx,
EOFNH and OLxW distributions in modeling the data.

The histogram of the data with the densities of the EOLxLx, BELx, EOFNH and
OLxW distributions are shown in Figure 8. It can be observed that the EOLxLx distri-
bution fits the data better than the other distributions.

Again, the performance of the distributions is illustrated with P-P plots of the fitted
distributions shown in Figure 9. It can be observed that EOLxLx describes the data
better than the other competing distributions.
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TABLE 4
Model comparison for fatigue life of 6061-T6 aluminum coupons data.

Model Parameter estimates -2` AIC BIC K-S A-D

EOLxLx

α= 3.524 (2.529)

927.948 937.948 951.073 0.065 0.295

β= 46.407 (0.150)
θ= 0.034 (0.061)
δ = 2.501 (0.227)
σ = 88.349 (0.036)

BELx

a = 4.111 (0.282)

930.776 940.776 953.901 0.082 0.658

b = 15.075 (0.081)
λ= 0.008 (0.002)
θ= 2.846 (0.489)
β= 11.346 (0.100)

EOFNH

α= 1.500 (0.316)

956.506 964.506 975.005 0.139 3.303
β= 1.100 (0.286)
λ= 0.007 (0.003)
θ= 2.600 (0.372)

OLxW

α= 0.896 (0.233)

954.073.01 962.073 972.573 0.152 4.505
θ= 84.688 (0.001)
λ= 0.004 (0.003)
σ = 1.464 (0.142)
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Figure 8 – The estimated densities of EOLxPL, KwTLL, OLxLL and OP distributions.
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Figure 9 – P-P plots of EOLxPL, KwTLL, OLxLL and OP distributions.
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9. CONCLUSION

A new family of distributions called the extended odd Lomax family of distributions is
proposed in this study with two extra shape parameters and one scale parameter. For a
baseline distribution G(x,ω), several special distributions are derived and the shapes of
their density and hazard rate functions obtained to illustrate the flexibility of the new
family of distributions. Various statistical properties of the family of distributions are
also derived. The parameters of the family of distributions are obtained using maximum
likelihood method of estimation. The consistency of the maximum likelihood estima-
tors are investigated via Monte Carlo simulations. The results show that the estimators
exhibit desirable properties of estimators with increasing sample size. Two special dis-
tributions of the family of distributions are applied to two real datasets to illustrate the
flexibility and usefulness of the new family of distributions. The results reveal that the
distributions perform better and adequately describe the datasets.
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SUMMARY

The Lomax distribution has a wide range of applications. Due to this, it has had many extensions
to render it more flexible and useful to model real world data. In this study, a new family of
distributions called the extended odd Lomax family of distributions is introduced by adding two
extra shape parameters and one scale parameter. We derived several statistical properties of the
new family of distributions. The parameters of the family of distributions are estimated by the
use of maximum likelihood method and the consistency of the estimators investigated via Monte
Carlo simulations. The usefulness and flexibility of the new family of distributions are illustrated
by the use of two real datasets. The results show that the distributions adequately describe the
datasets.

Keywords: Odd Lomax distribution; Family of distributions; Quantile function.
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