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1. INTRODUCTION

Since the seminal work of Pareto (Pareto, 1897), the classical application of heavy-tailed
distributions in economics has regarded allocations of income and wealth (Gastwirth,
1972; Cowell and Flachaire, 2007; Ogwang, 2011; Benhabib et al., 2011; Toda, 2012;
Benhabib et al., 2017). Right-hand heavy-tails are also common when analysing con-
sumption data (Nordhaus, 2012; Toda and Walsh, 2015), price of land (Kaizoji, 2003),
CEO compensations (Gabaix and Landier, 2008), firm sizes (Simon and Bonini, 1958;
Axtell, 2001) and productivities (Chaney, 2008). In international economics, revealed
comparative advantage and changes in exchange rates also follow a Pareto distribution
(Hinloopen and Van Marrewijk, 2012). In finance, fluctuations of stock and commod-
ity prices follow power laws as well (Mandelbrot, 1963; Gabaix et al., 2003; Zhong and
Zhao, 2012; Das and Halder, 2016). Most applications of heavy tails in economics and fi-
nance were discussed in detail by Gabaix (2009). Apart from applications in economics,
heavy tailed distributions are used to describe the upper tails of the sizes of cities (Rosen
and Resnick, 1980; Soo, 2005), lakes (Seekell and Pace, 2011) and sets of mineral de-
posits (Agterberg, 1995). They are also common in biology (Ferriere and Cazelles, 1999;
Seekell and Pace, 2011), telecommunications (Huebner et al., 1998), seismology (Pis-
arenko and Sornette, 2003; Nordhaus, 2012) and many other fields (Newman, 2005).

Most statistical and econometric methods are based on laws of large numbers and
central limit theorems. Kolmogorov’s law of large numbers requires the existence of a
first finite moment. Lyapunov’s version of the central limit theorem assumes the exis-
tence of a finite moment of an order higher than two. If data comes from a heavy-tailed
distribution, these assumptions may not be satisfied. The existence of specific finite mo-
ments is closely linked to the concept of a tail index, and estimation of the tail index is

1 Corresponding Author. E-mail: i.fedotenkov@gmail.com
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one of the key problems in statistics. Many methods have been proposed and numerous
modifications of existing methods made. The goal of this paper is to review the current
tail-index estimators.

There are numerous tail-index estimators. They are based on various assumptions
and have diverse asymptotic and finite-sample properties. Unfortunately, the literature
in this field is unstructured. Hence, data analysts and policy-makers have a tough time
choosing the best techniques for their particular cases. Even statisticians, who work
with heavy-tailed distributions, often face difficulties when searching the literature and
are not always aware of many developments in this field. As a consequence, a few similar
estimators were derived independently by different authors. The goal of our paper is to
correct this shortcoming. The paper reviews more than one hundred tail-index estima-
tors, discusses their assumptions and provides closed-form expressions. We also correct
a number of typos present in the original works - corrections okayed by the authors.2

The paper also aims to provide nontechnical explanations of methods, so as to be under-
stood by researchers with intermediate skills in statistics. The paper can be considered
a reference source on tail index estimators for researchers from various fields of science.

An excellent review of the advantages in the extreme value theory was done by
Gomes and Guillou (2015). They discussed a large number of underlying theories and
reviewed a number of tail-index estimators, providing equations for thirteen of them.
We cover a much wider range of estimators, and provide analytical expressions for more
than one hundred various tail index estimators. We avoid repeating information pro-
vided by Gomes and Guillou (2015); however, the most widely-known estimators are
also briefly discussed in order to compare them with other methods.

A number of works are devoted to comparisons of various estimators. For exam-
ple, De Haan and Peng (1998) compared asymptotic minimal mean squared errors of
four tail-index estimators and Caeiro and Gomes compared the asymptotic properties
of several reduced-bias tail-index estimators. A few works performed Monte Carlo sim-
ulations in order to compare the finite-sample properties of the estimators (Gomes and
Oliveira, 2003; Brzezinski, 2016; Paulauskas and Vaičiulis, 2017b; Kang and Song, 2017).
However, typically, the number of compared estimators is not large (less than ten). In
our work, we perform simple Monte-Carlo simulations for more than ninety of the es-
timators reviewed in this paper. Computer codes for the estimators, written in R, are
readily available on the author’s web page.

The priority of this review is univariate Pareto-type tail-index estimators for i.i.d.
non-truncated data focusing on right tails only. To the best of our knowledge, this is the
most complete review of tail-index estimators.

2 The authors who replied to our queries are listed in the acknowledgments section.
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1.1. Notation

Before proceeding, we introduce the notation used throughout the paper.

Uj = j (logX(n− j+1)− logX(n− j )). (1)

V j ,k :=X(n− j+1)/X(n−k). (2)

M (l )
k ,n =

1
k

k−1
∑

i=0

�

logX(n−i)− logX(n−k)
�l , (3)

where X(1), ...,X(n) are the order statistics of the sample, k denotes the number of largest
observations treated as the tail, j denotes an index, 1≤ j ≤ k. A table with notations is
presented in Appendix A.

1.2. Assumptions and k selection

A common assumption is that observations are i.i.d. However, a number of estimators
reviewed here also allow for dependent observations. Many estimators are based on the
assumption that the right tail of a distribution has a Pareto form.

• A1: 1− F (x)∼ L(x)x−α as x→∞,

where α is a tail index. It is assumed that α > 0. L(x) is a slowly varying function, i.e.
limt→∞ L(t )/L(t x)→ 1 as t →∞, for every x > 0.

It is also convenient to denote an extreme value index (EVI) γ = α−1. Very often
estimators are designed for γ (instead of α) estimation. Sometimes γ is also allowed to
take on negative values. Note that even if γ̂ is an unbiased estimator of γ , γ̂−1 is a biased
estimator of α.

Hall (1982) introduced the following class of distribution tails:

• A2: 1−F (x) = 1−F (x) =C x−α[1+D1x−α+...+Dm x−mα+o(x−mα)] as x→∞.

Another functional form with second-order parameters D > 0, ρ< 0 was studied in
detail by Hall and Welsh (1985).

• A3: 1− F (x) =C x−α[1+D xρ+ o(xρ)] as x→∞.

A more general assumption of a functional form, which allows for a second-order pa-
rameter ρ is

• A4: limt→∞
logV (t x)−logV (t )−γ log x

A(t ) =
¨ xρ−1

ρ if ρ< 0

log x if ρ= 0
,
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where A(·) is a suitably chosen function of constant sign near infinity. Estimators which
take the second-order parameters into account often perform badly with ρ = 0; there-
fore, in assumption A4 this case is often omitted.

Sometimes the second-order parameter ρ is equalised to -1, resulting in the following
simplified version of assumption A3:

• A5: 1− F (x) = c1x−α+ c2x−α−1+ o(x−α−1) as x→∞.

Assumptions A1-A5 are based on Pareto distributions allowing for positive α (and
γ ) only. A more general case, which allows for γ ∈ R, results from assumptions based
on the generalised Pareto distribution (GPD), or extreme value distribution. Negative
values of γ correspond to distributions with a finite right endpoint. The GPD is defined
as follows:

• A6: 1− F (x) =











�

1+ γ (x−µ)
σ

�−1/γ

if γ 6= 0, x ≥µ

e−
x−µ
σ if γ = 0, µ≤ x ≤µ−σ/γ

,

where σ , σ > 0 is a scale parameter, and µ, µ ∈ (−∞,∞) is a location parameter.
There are many parametric methods which assume that an entire sample is drawn from
a GPD. A GPD can also, however, be applied for a tail only. It is often assumed that the
difference between values exceeding a certain (high) threshold and the threshold itself
has a GPD distribution.

• A7: The sample is drawn from a distribution which belongs to the maximum
domain of attraction of the generalised extreme value distribution. I.e. for some
sequences an > 0, bn , n = 1,2, ... and γ ∈ R,

limn→∞ P
§

max(X1,X2,...,Xn )−bn
an

≤ x
ª

= exp
�

− (1+ γ x)−1/γ
�

, 1+ γ x > 0.

Another popular assumption is

• A8: The sample is drawn from a distribution which belongs to the domain of
attraction of a stable distribution with 0<α < 2.

The stability parameter α in assumption A8 corresponds to the tail index if 0 < α < 2.
The weakness of this assumption is that it imposes strict limitations on α, but it can be
extended by raising the data to a power.

Although assumptions A1-A8 seem different, the parameter α (γ ) always determines
the heaviness of the tail. Many classical estimators are based on assumption A1. If
asymptotic properties of an estimator are derived using an alternative assumption, we
specify this fact in the text. More details on theories underlying these assumptions are
provided by Gomes and Guillou (2015).

Most of the estimators are based on the k largest observations, with the following
assumptions about k:



A Review of Pareto-Tail Index Estimators 249

• B1: k(n)→∞ as n→∞.

• B2: k(n) = o(n) as n→∞.

If the methods use different assumptions, we specify them in the text. Otherwise, we
suppose that B1-B2 hold.

The question of k selection, which minimizes asymptotical mean-squared errors,
was addressed in detail by Hall (1982). Under assumption A3, he showed that the opti-
mal k is proportional to n−2ρ/(α−2ρ) for the Hill estimator. If the chosen k is too high,
the variance of the estimator increases. If k is too low, the bias of the estimator grows.
De Haan and Peng (1998) found optimal k under assumption A4 for four popular estima-
tors; however, the resulting expressions are rather complicated for their direct practical
use. We refer to the work of Németh and Zempléni (2017) for a concise summary of a
few ‘practical’ methods, which can be easily implemented numerically. A few graphi-
cal methods are also available (Drees et al., 2000). It must be mentioned that nowadays
attempts to dispense with assumptions B1-B2 are being made (Müller and Wang, 2017).

2. HILL ESTIMATOR AND OTHER ESTIMATORS FOR γ > 0

2.1. Hill estimator

The most popular estimator of tail indexes is the Hill estimator (Hill, 1975). Hill sug-
gested approximating the k-th largest observations with a Pareto distribution as in as-
sumption A1 and used a maximum likelihood estimator (MLE) for γ estimation.

γ̂H
n (k) =

1
k

k−1
∑

i=0

log
�X(n−i)

X(n−k)

�

. (4)

Although the Hill estimator is MLE, it is classified as a semi-parametric method
because the Pareto distribution is only assumed for the limiting behavior of the tail.

Mason (1982) showed weak consistency of the Hill estimator under assumptions A1,
B1 and B2. For strong consistency an additional technical assumption is also required
(Deheuvels et al., 1988). Its asymptotic normality was analysed in detail by Hall (1982);
Haeusler and Teugels (1985); Csorgo and Mason (1985); Beirlant and Teugels (1989);
De Haan and Resnick (1998) and others.

2.2. Kernel estimator

Csorgo et al. (1985) extended the Hill estimator with kernels. Its form is the following:

γ̂K
n (k) =

∑n−1
j=1

j
k K
�

j
k

�

�

logX(n− j+1)− logX(n− j )
�

1
k

∑n−1
j=1 K

�

j
k

� . (5)
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K(·) is a kernel function with the following properties: 1) K(u)> 0, 0< u <∞, 2) it is
non-increasing and right continuous on (0,∞), 3)

∫∞
0 K(u)d u = 1; 4)

∫∞
0 u−1/2K(u)d u <

∞. The Hill estimator is obtained when K(u) = 1(0< u < 1). If K(u) = u−1
1(0< u <

1), the kernel estimator reduces to the De Haan and Resnick estimator discussed below
(see Eq. (87)), where 1 is a unit indicator function.

2.3. Fraga Alves estimator

Fraga Alves (1995) developed a simple estimator for positive γ . It uses fewer observations
than the Hill estimator and its computation is faster.

γ̂ :=
1

log c
log

X(n−k+1)

X(n−ck+1)
, (6)

where c , c > 1 is an integer and ck < n+ 1. The estimator is based on assumption A7.

2.4. Aban & Meerschaert shifted Hill’s estimator

As the Hill estimator is not shift-invariant, Aban and Meerschaert (2001) changed as-
sumption A1 to 1−F (x)∼C (x− s)−α, where s is a shift parameter, and C is a constant
C > 0. The MLE is

α̂=
�

1
k

k−1
∑

i=0

log
�X(n−i)− ŝ

X(n−k)− ŝ

��−1

(7)

and the optimal shift satisfies

α̂(X(n−k)− ŝ)−1 =
�

α̂+ 1
k

� k−1
∑

i=0

(X(n−i)− ŝ)−1.

The optimal α and s can be solved from these two equations.

2.5. Danielsson, Jansen, De Vries estimator

Danielsson et al. (1996) suggested the following moment ratio estimator based on as-
sumption A3:

γ̂ l
M R =

M (l+1)
k ,n

(l + 1)M (l )
k ,n

, (8)

where M (l )
k ,n is defined in Eq. (3). l is a tuning parameter. Often l is equalised to 1.
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2.6. Nuyts estimator

Nuyts (2010) suggested using Simpson’s rule to improve the Hill estimator. The tail
index α is estimated numerically as a solution to the following equation:

1
k

k−1
∑

i=0

log
�

X(n−i)
�

=
1
α
+

logX(k+1)X
−α
(k+1)− logX(n)X

−α
(n)

X−α(k+1)−X−α(n)
. (9)

2.7. Weiss estimator

Weiss (1971) considered a class of probability densities of the form

f (x) = c(x −θ)α+1[1+ r (x −θ)], x ≥ θ; f (x) = 0, x <θ.

C > 0, α > 0, and |r (y)| ≤ Kyν , for all y in some interval [0,∆], where K , ν and ∆ are
positive but unknown constants. The estimator is:

α̂= log2
�

log
X(k(n))−X(1)

X(k(n)/2)−X(1)

�−1

. (10)

It is assumed that k(n) is an even integer. Assumption B2 is changed to a more restrictive
one: k(n)/nρ→ 0 for all ρ> 0.

2.8. Hall class of estimators

Hall (1982) developed a tail index estimator under the A2 assumption.
Define a j and b j as constants satisfying am+1 > am > ... > a1 > 0 (m is defined in

A2) and
m+1
∑

j=1

b j a
s
j =

§

1 if s = 0
0 if 1≤ s ≤ m

The class of estimators is defined as

α̂=
�m+1
∑

j=1

b j γ̂
H
n (ba j kc)

�−1

, (11)

where γ̂H
n () denotes estimates received with the Hill estimator and b·c the integer part

of a j k.

3. QUANTILE PLOTS

First, quantile plots for γ > 0 are discussed, in this section. Second, the case of γ ∈ R is
considered.
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3.1. Zipf plots

Quantile plots for tail index estimation were introduced by Zipf (1941, 1949). Kratz
and Resnick (1996); Schultze and Steinebach (1996); Beirlant et al. (1996b) studied this
method from various perspectives. Examine a scatter-plot with coordinates

�

−log
�

j/(n+
1)
�

, logX(n− j+1)
�

, j = 1, ..., n. If the right side of this plot is ‘almost’ linear (supposing,
this is so for the last k observations) its slope corresponds to γ , and it can be estimated
by applying the ordinary least squares (OLS) with an intercept:

γ̂1 =

∑k
j=1 log

�

(k + 1)/ j
�

logX(n− j+1)− k−1∑k
j=1 log

�

(k + 1)/ j
�
∑k

j=1 logX(n− j+1)
∑k

j=1 log2 �(k + 1)/ j
�

− k−1
�
∑k

j=1 log
�

(k + 1)/ j
��2 .

(12)
It is also possible to apply a weighted OLS regression (Csorgo and Viharos, 1998;

Viharos, 1999).

3.2. Schultze and Steinebach estimators

Schultze and Steinebach (1996) introduced two additional estimators. One is based on
the regression line with no intercept:

γ̂2 =

∑k
j=1 log (n/ j ) logX(n− j+1)
∑k

j=1 log2 (n/ j )
. (13)

The other is similar to the estimator (12), but with reversed dependent and explanatory
variables:

γ̂3 =

∑k
j=1 log2 �X(n− j+1)

�

− k−1
�
∑k

j=1 logX(n− j+1)
�2

∑k
j=1 log

�

(k + 1)/ j
�

logX(n− j+1)− k−1
∑k

j=1 log
�

(k + 1)/ j
�
∑k

j=1 logX(n− j+1)

.

(14)

3.3. Brito and Freitas estimator

Brito and Freitas (2003) suggested using a geometric mean of the estimators γ̂1 and γ̂3:
γ̂ =

p

γ̂1γ̂3, introduced by Schultze and Steinebach. They showed that γ̂1 ≤ γ̂ ≤ γ̂3.

3.4. Hüsler et al. estimator

Hüsler et al. (2006) introduced a weighted least squares estimator of the following form:

γ̂ =

∑k−1
i=0 g

� i+1
k+1

�

log
� i+1

k+1

�

log
� X(n−i)

X(n−k)

�

∑k−1
i=0 g

� i+1
k+1

�

log
� i+1

k+1

�2 , (15)
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where g (·)≥ 0 on the interval (0,1).

3.5. Beirlant et al. estimators

Beirlant et al. (1996b) proposed the regression line to force passing through the anchor
point

�

− log
�

(k + 1)(n+ 1)−1�, logX(n−k)
�

. (16)

They suggested using the weighted OLS estimators of the regression line. If the weight
for observation j is taken as w j = 1/ log [(k + 1)/ j ], this method coincides with the
Hill estimator. The other weights make the method similar to the Kernel estimator (5).
The advantage of this method is that k can be chosen to minimize the weighted mean
squared error.

3.6. Aban and Meerschaert estimators

Aban and Meerschaert (2004) studied the best linear unbiased estimator for quantile
regression, which takes into account the mean and covariance structure of the largest
order statistics. The resulting estimator is equivalent to

γ̂ = k γ̂H
n /(k − 1), (17)

where γH
n is the Hill estimator. Another estimator, suggested by Aban and Meerschaert,

with a slightly higher variance is

γ̂ =
k
∑

i=1

si logX(n−i+1), (18)

where

si =
āk (an−i+1− āk )

∑k
i=1(an−i+1− āk )2

,

ar =
∑r

j=1(n− j + 1)−1 and āk is the arithmetic mean of an−i+1, i = 1, ..., k.
In a note, Aban and Meerschaert also suggested reducing the bias by using a regres-

sion of the following form:

logX(n− j+1) = const− γ log
� j − 1/2

n

�

, j = 1, ..., k . (19)

Formally, its consistency was shown by Gabaix and Ibragimov (2011)).
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3.7. Gabaix and Ibragimov estimator

Apart from showing the consistency of the estimator (19), Gabaix and Ibragimov (2011)
also considered a similar estimator with reversed dependent and explanatory variables;
they showed that −1/2 is an optimal shift:

log
� j − 1/2

n

�

= const−α logX(n− j+1), j = 1, ..., k . (20)

Furthermore, they considered two harmonic estimators. Define H ( j ) =
∑ j

i=1 j−1.

H ( j − 1) = const− γ logX(n− j+1), j = 1, ..., k , (21)

logX(n− j+1) = const−αH ( j − 1), j = 1, ..., k . (22)

3.8. Beirlant et al. (1999) bias-reduced quantile plots

Beirlant et al. (1999) suggested a modification of the quantile plot estimation method,
which reduces a bias of the estimate. They noticed that the slowly varying function
L(x) in assumption A1 may cause a serious bias and suggested taking it into account
when analyzing quantile plots. Again, the Pareto quantile plot to the right of the point
− log

�

(k + 1)/(n− 1), logX(n−k)
�

was analyzed. The method relies on the maximum
likelihood estimation of the parameters γ , ρ and bn,k in the following model:

Uj ,k =
�

γ + bn,k

� j
k + 1

�−ρ�

f j ,k , 1≤ j ≤ k , (23)

where Uj ,k is defined in Eq. (1) and f j ,k is an i.i.d exponential random variable. If the

term bn,k

�

j/(k+1)
�−ρ is ignored, the MLE of the Eq. (23) reduces to the Hill estimator.

The asymptotic properties of this estimator were shown by Beirlant et al. (2002). There
is also a modification of this estimator for censored data (Beirlant and Guillou, 2001).

3.9. Generalized quantile plots

Beirlant et al. (1996a) suggested using quantile plots for γ , which is not limited by posi-
tive values. The method fits a linear regression through the k points which correspond
to k largest X .

�

− log( j/n), log U H j ,n

�

, j = 1, ..., n, (24)

where
U H j ,n =X(n− j )γ̂

H
n (k),

and γ̂H
n (k) is the Hill estimator.
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Beirlant et al. (2005) proposed a simplification of the OLS estimator for γ ∈ R:

γ̂ =
1
k

k
∑

j=1

�

log
k + 1

j
− 1

k

k
∑

i=1

log
k + 1

i

�

log U H j ,n . (25)

They also generalized the Hill estimator:

γ̂ =
1
k

k
∑

i=1

log
� U H j ,n

U Hk+1,n

�

. (26)

However, this generalization works for γ > 0 only.

4. MINIMAL DISTANCE ESTIMATORS

Methods based on quantile plots fit a regression line to a linear part of the Q-Q plot.
Usually, this is done with an OLS or a similar method. There are also several methods
designed as minimal distance estimators with no relation to Q-Q plots.

4.1. Vanderwale et al. estimator

Vandewalle et al. (2007) suggested a minimization of least square errors for tail index
estimations. Namely,

θ̂= argmin
θ

∫

�

f (x|θ)− f (x)
�2d x,

where f (·) denotes a density function of normalized tail observations: X(n− j+1)/X(n−k).
Denote θ= {γ ,δ,ρ}. Then, assuming the following density function

fθ(x) = (1−δ)
�

1
γ

x−(1+1/γ )
�

+δ
��

1
γ
−ρ

�

x−(1+1/γ )−ρ
�

,

the estimator reduces to that of Eq. (27).

%(θ) =
(1+δ)2

(γ + 2)γ
+ 2

δ(1−δ)(1− γρ)
(γ + 2− γρ)γ

+
δ2(1− γρ)2

(γ + 2− 2γρ)γ
,

(θ̂, ŵ) = argmin
θ,w

�

w2%(θ)− 2w
k

k
∑

i=1

fθ

�X(n− j+1)

X(n−k)

��

. (27)

γ̂ is one of the θ̂ elements. The authors claim this method is more robust than those
based on ML.
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4.2. Tripathi et al. estimators

Tripathi et al. (2014) improved the Hill estimator by selecting specific parametric forms,
which generalize the Hill estimator, and by minimizing the loss function

�

α̂/α− 1
�2.

Denote Sk =
∑k−1

i=0 log
�

X(n−i)/X(n−k)
�

. The best tail-index estimator in the class of s/Sk
is found to be

α̂1 =
k − 3

Sk
. (28)

In the class of estimators of the form s/(Sk +max(0, logXk )), the optimal ‘supremum’
estimator is

α̂2 =
k − 2

Sk +max(0, logXk )
. (29)

The ‘infimum’ estimator is:

α̂3 =
k − 3

Sk +max(0, logXk )
. (30)

The authors showed that these estimators surpass Hill estimator performance in terms
of quadratic loss function; however, the optimization was made on the 0< α < 1 inter-
val. This assumption restricts the set of possible applications.

5. BIAS-REDUCED ESTIMATORS

Usually, bias-reduced estimators take the second-order parameter ρ into account, and
are based on assumptions A2-A4.

5.1. Feuerverger and Hall estimators

Feuerverger and Hall (1999) tried to reduce the bias of the Hill and OLS tail index esti-
mators under assumption A3: Denote vi = l o g Ui , where Ui is defined in Eq. (1) The
MLE estimator of α is given by

α̂=
h

k−1
k
∑

i=1

Ui exp
�

− D̂(i/n)−ρ̂
	

i−1
. (31)

and ρ̂ and D̂ are obtained from the minimization of

L(D ,ρ) =Dk−1
k
∑

i=1

(i/n)−ρ+ log
h

k−1
k
∑

i=1

Ui exp
�

−D(i/n)−ρ
	

i

.

The OLS estimate of α is received from

S(µ, D ,ρ) =
k
∑

i=1

�

vi −µ−D(i/n)−ρ
	2
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minimization with respect to µ, D and ρ, and

α̂= exp(Γ ′(1)− µ̂). (32)

Γ ′(1)≈−0.5772157 is a derivative of gamma function at point 1. Alternatively, one can
plug OLS estimates ρ̂ and D̂ into estimator (31). The weakness of these methods is that
convergence problems often arise (Gomes and Oliveira, 2003).

Gomes and Martins (2004) simplified Feuerverger and Hall estimators by assuming
ρ = −1. Furthermore, they approximated exp

�

−Di/n
	

as 1−Di/n, leading to the
following approximation of Eq. (31):

γ̂M L(k) = γ̂H
n (k)−

�

1
k

k
∑

i=1

i Ui

�

∑k
i=1(2i − k − 1)Ui

∑k
i=1 i(2i − k − 1)Ui

, (33)

where γ̂H
n (k) is the Hill estimator. The OLS estimator (32) is rewritten as

γ̂ LS (k) = exp
§2(2k + 1)

k(k − 1)

k
∑

i=1

log Ui − Γ
′(1)− 6

k(k − 1)

k
∑

i=1

i log Ui

ª

, (34)

Gomes et al. (2007a) suggested estimating the second-order parameters separately with
a larger k.

5.2. Peng estimators

Using assumption A4, Peng (1998) developed an asymptotically unbiased estimator of
the following form (γ > 0):

ρ̂= (log2)−1 log
Mn(n/(2 log n))− 2(γ̂H

n (n/(2 log n)))2

Mn(n/ log n)− 2(γH
n (n/ log n))2

γn(k) = γ̂
H
n −

Mn(k)− 2(γ̂H
n (k))

2

2γ̂H
n (k)ρ̂n

(1− ρ̂n), (35)

where Mn(k) = M 2
k ,n defined in Eq. (3), and γ̂H

n denotes the Hill estimator (Eq. (4)), ρ
is the second-order parameter. The author claims that the estimator remains unbiased
even for large k; however, its asymptotic properties were still found using assumptions
B1 and B2. For a more general γ , Peng modified the Pickands estimator:

ρ̂= (log2)−1 log
γ̂ P

n (n/(2 log n))− γ̂ P
n (n/(4 log n))

γ̂ P
n (n/ log n)− γ̂ P

n (n/(2 log n))
,

γ̂n(k) = γ̂
P
n (k)−

γ̂ P
n (k)− γ̂ P

n (k/4)
1− 4ρ̂

, (36)
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where γ̂ P
n (k) is the Pickands estimator defined in Eq. (67). Despite the good theoretical

asymptotic properties of the Peng estimators, our simulations show that the expressions
under the logarithms in ρ̂ estimation sometimes register negative values, leading to a
failure in calculations.

5.3. Huisman et al. estimator

Huisman et al. (2001) noted that if assumption A2 is satisfied with m = 1, the bias of the
Hill estimator is almost linear in k. As small values of k result in a lower bias (at the cost
of higher variance), they proposed estimating γ (r ) with the Hill estimator r = 1, ..., k,
and then running a regression

γ (r ) =β0+β1 r + ε(r ), r = 1, ..., k . (37)

β̂0 is a bias-free estimate of the tail index.

5.4. Gomes et al. (2000,2002) Jackknife estimators

Gomes et al. (2000) studied jackknife estimators of the following form:

γ̂ =
γ̂1− q γ̂2

1− q
,

where γ̂1 and γ̂2 are some consistent estimators of γ and q = d1(n)/d2(n) - is the ratio of
biases of these estimators. They considered the following special cases:

γ̂1 = 2γ̂ (2)(k)− γ̂ (1)(k) (38)

γ̂2 = 4γ̂ (3)(k)− 3γ (1)(k), (39)

γ̂3 = 3γ̂ (2)(k)− 2γ (3)(k), (40)

γ̂4 = 2γ̂ (1)(k/2)− γ (1)(k), (41)

where γ̂ (1)(k) is the Hill estimator (Eq. (4)), γ̂ (2)(k): a Danielsson et al. estimator (Eq.
(8)) with l = 1, and γ̂ (3)(k) is a Gomes and Martins estimator with l = 2 (Eq. (79)):

Estimator (39) is a simplified version of Peng’s estimator (35) with ρ = −1. More
complete versions of estimators (40) and (41) were studied by Gomes and Martins (2002);
Gomes et al. (2002) under assumption A4:

γ̂3 =
−(2− ρ̂)γ̂ (2)(k)+ 2γ̂ (3)(k)

ρ̂
, (42)

γ̂4 =
γ̂ (1)(k)− 2−ρ̂γ̂ (1)(k/2)

1− 2−ρ̂
. (43)
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ρ̂ can be estimated as

ρ̂τ(k) =−
�

�

�

�

3(T (τ)(k)− 1)
(T (τ)(k)− 3)

�

�

�

�

T (τ)(k) =



















�

M (1)k ,n

�τ
−
�

M (2)k ,n/2
�τ/2

�

M (2)k ,n/2
�τ/2
−
�

M (3)k ,n/6
�τ/3 if τ > 0

log
�

M (1)k ,n

�

− 1
2 log

�

M (2)k ,n/2
�

1
2 log

�

M (2)k ,n/2
�

− 1
3 log

�

M (3)k ,n/6
� if τ = 0

M (l )
k ,n is defined in Eq. (3) and τ is a tuning parameter. This estimator ofρwas introduced

by Fraga Alves et al. (2003).
In Gomes et al. (2002) several other generalized jackknife estimators were also con-

sidered. One is based on the work of Quenouille (Quenouille, 1956):

γ̂G
n,ρ̂(k) =

γ̂n −
�

n/(n− 1)
�ρ̂ ¯̂γn

1−
�

n/(n− 1)
�ρ̂

, ¯̂γn =
1
n

n
∑

i=1

γ̂n−1,i (k), (44)

where γ̂n(k) is a consistent estimator of γ based on n − 1 observations obtained from
the original sample after the exclusion of the i -th element, and ρ̂ is a suitable estimator
of ρ. They also studied a simplified version of this estimator with ρ=−1.

The second estimator is a modification of estimator (43) in the case of the Fréchet
model:

γ̂G2 =
γ̂n(k)−

l o g (1−k/n)
l o g (1−k/(2n)) γ̂n(k/2)

1− l o g (1−k/n)
l o g (1−k/(2n))

. (45)

The third estimator is designed for generalized Pareto and the Burr models:

γ̂G1 =
(2+ k/n)γ̂n(k/2)− γ̂n(k)

1+ k/n
. (46)

5.5. Gomes et al. (2005) Jackknife estimator

A different jackknife estimator was introduced by Gomes et al. (2005b). They intro-
duced another generalised class of estimators:

γ̂ (s)n (k) =
s2

k s

k
∑

i=1

i s−1 l o g
�X(n−i+1)

X(n−k)

�

, s ≥ 1. (47)

If s = 1, this estimator simplifies to the Hill estimator. Combining the Hill estimator
with an estimator where s 6= 1, they received a jackknife estimator:

γ̂G
n =−

s(1− ρ̂)
ρ̂(s − 1)

�

γ̂ (1)n (k)−
s − ρ̂

s(1− ρ̂)
γ̂ (s)(k)

�

. (48)



260 I. Fedotenkov

5.6. Gomes et al. (2007) Jackknife estimator

Gomes et al. (2007b) considered generalised estimators

γ̂ (s)1 (k) =
s
k

k
∑

i=1

� i
k

�s−1

Ui , s ≥ 1 (49)

γ̂ (s)2 (k) =−
s2

k

k
∑

i=1

� i
k

�s−1

log
� i

k

�

Ui , s ≥ 1 (50)

proposing a number of jackknife estimators similar to previous papers. An optimal
(variance reducing) combination of two estimators (49) (with different s ) is

γ̂GJ1(ρ̂) =
(1− ρ̂)2γ̂ (1)1 (k)− (1− 2ρ̂)γ̂ (1−ρ̂)1 (k)

ρ̂2
. (51)

where ρ̂ is an estimate of the second-order parameter. Note that γ̂ (1)1 (k) is the Hill esti-
mator. An optimal combination of estimators (49) and (50) is

γ̂GJ2(ρ̂) =
1
ρ̂
( ŝ γ̂ ( ŝ)1 (k)− ( ŝ − ρ̂)γ

( ŝ)
2 (k)). (52)

where ŝ is such that

3 ŝ3− 5 ŝ2+ ŝ(ρ̂2− ρ̂+ 3)− (2ρ̂2− 2ρ̂+ 1) = 0.

In the above-mentioned paper, an optimal jackknife estimator based on (50) with two
different s was also studied, but the authors do not provide an optimal combination. The
authors also studied the case of ρ̂ equalized to -1. In this case, the jackknife estimator
with the lowest variance based on (49) is γ̂GJ1(−1) = 4γ̂ (1)1 (k)− 3γ̂ (2)1 (k).

5.7. Caeiro et al. 2005 bias-reduced Hill’s estimator

Caeiro et al. (2005) introduced two direct ways to reduce the bias of the Hill estimator:

γ̂
β̂,ρ̂
(k) = γ̂H

n (k)
�

1−
β̂

1− ρ̂

�n
k

�ρ̂�

, (53)

γ̂
β̂,ρ̂
(k) = γ̂H

n (k)exp
�

−
β̂

1− ρ̂

�n
k

�ρ̂�

, (54)

where γ̂H
n (k) is the Hill estimator. ρ and β are second-order parameters. Consistent

estimators for ρ̂ can be found in subsections (5.2) or (5.4). β can be estimated as
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β̂(k) =
� k

n

�ρ̂

�

1
k

∑k
i=1

� i
k

�−ρ̂
��

1
k

∑k
i=1 Ui

�

−
�

1
k

∑k
i=1

� i
k

�−ρ̂Ui

�

�

1
k

∑k
i=1

� i
k

�−ρ̂
��

1
k

∑k
i=1

� i
k

�−ρ̂Ui

�

−
�

1
k

∑k
i=1

� i
k

�−2ρ̂Ui

� .

The authors argued that it could be wise to use a higher k for an estimation of the second-
order parameters than that used in the tail index estimation. Alternatively, one may
use estimators of the second-order parameters discussed in detail by Caeiro and Gomes
(2006).

5.8. Gomes, Figueiredo and Mendonça best linear unbiased estimators (BLUE)

Gomes et al. (2005a) look for a BLUE in the presence of a second-order regular variation
condition. They define T = γ̂i ; i = k−m+1, ..., k; 1≤ m ≤ k, where γ̂i is an estimator
of γ . They assume that the covariance matrix of T can be approximated as γ 2Σ and its
mathematical expectation can be asymptotically approximated as γ s+φ(n, k)b, where
s is a vector of unities of length m; and the second term in the sum accounts for the
bias. Then, they look for a vector a′ = (a1,a2, ...,am) such that a′Σa is minimal, with
the restrictions a′ s = 1 and a′b = 0. The result of this optimization problem is:

a =Σ−1P(P ′Σ−1P)−1
�

1
0

�

,

where P = [s b]. The BLUE estimator is given by

γ̂ BLU E = a′T .

In the case of a Hill estimator, and having assumed a model similar to assumption A3,
m = k, and ρ=−1, this estimator simplifies to

γ̂ =
6

k2− 1

k−1
∑

i=1

i γ̂H
n (i)−

2k − 1
k + 1

γ̂H
n (k), (55)

where γH
n (i) is the Hill estimator (4). The authors also provide an explicit expression

for the case of a more general ρ:

γ̂ =
k+1
∑

i=1

ai (ρ̂) logX(n−i+1), (56)

with

ai (ρ̂) =
1
k

�1− ρ̂
ρ̂

�2§

1−
k(1− 2ρ̂)

1− ρ̂

�
� i

k

�1−ρ̂
−
� i − 1

k

�1−ρ̂�ª

, i = 1, ..., k ,

ak+1(ρ̂) =−
�1− ρ̂

ρ̂

�

,

where ρ̂ is a consistent estimate of the second-order parameter.
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5.9. Beirlant et al. 2008 estimator

Beirlant et al. (2008) proposed a bias-reduced tail-index estimator with asymptotic vari-
ance equal to the Hill estimator:

γ̂ = γ̂H
n − β̂ρ̂,k

�n
k

�ρ̂

Pρ̂,k , (57)

where γ̂H
n is the Hill estimator, ρ̂ is a consistent estimator of the second-order parameter

and

β̂ρ̂,k =
� k + 1

n+ 1

�ρ̂ pρ̂,k P0,k − Pρ̂,k

pρ̂,k Pρ̂,k − P2ρ̂,k
,

Pρ̂,k =
1
k

k
∑

i=1

� i
k + 1

�−ρ̂
Ui .

pρ̂,k in the definition of β̂ρ̂,k can be calculated as

pρ̂,k =
1
k

k
∑

i=1

� i
k + 1

�−ρ̂
.

They also found that the asymptotic optimal level for k used for Pρ̂,k estimation is k0 =
�

(1−2ρ)n−2ρ/(−2ρβ2)
�1/(1−2ρ), whereβ=Dρ/γ , and D is defined in assumption A3.

At the same time, it is reasonable to estimate parameters ρ̂ and β̂ using the number of
observations k1, which is higher than k, such as k1 = n1−ε, with a (relatively) small ε,
such as 0.05.

5.10. Baek and Pipiras estimators

Baek and Pipiras (2010) considered a distribution in the form of assumption A5, which
resulted in the following OLS estimator:

argminβ0,α,β1

k
∑

i=1

�

log
� i

k

�

−β0+α log
�X(n−i+1)

X(n−k)

�

−β1

� X(n−k)

n− i + 1

�
�2

. (58)

They also suggested changing log (i/k) with log (i − 0.5)/k. Alternatively, it is possible
to minimize

argminβ0,α,β1

k
∑

i=1

�

log
�X(n−i+1)

X(n−k)

�

−β0+
1
α

log
� i

k

�

−β1

� X(n−k)

n− i + 1

�
�2

. (59)
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Apart from these two estimators, Baek and Pipiras adopted a number of other es-
timators for assumption A5. For example, using the methodology of Aban and Meer-
schaert (2004) to search for the BLUE they received

γ̂ = γ̂H −
β1

k

k
∑

i=1

(X−1
(n−i+1)−X−1

(n−k+1)), (60)

where β1 could be estimated from Eq. (59). Having adopted the methodologies of
Gomes et al. (2000); Peng (1998), they received the following estimators:

α̂G =
2(2+ γH )

M (2)
k ,n

− 2
γ̂H

√

√

√

√

2

M (2)
k ,n

. (61)

α̂P =−(γH )
(−2)+ 2(γH + 1)/M (2)

k ,n , (62)

where M (2)
k ,n is defined in Eq. (3). Furthermore, they provided expressions for a modified

MLE introduced by Feuerverger and Hall (1999) and conditional MLE.

5.11. Brito et al. (2016) estimators

Brito et al. (2016) suggested the following estimator:

γ̂B (k) =
M (2)

k ,n − [M
(1)
k ,n]

2

k−1
∑k

i=1 log2(n/i)−
�

k−1
∑k

i=1 log(n/i)
�2 . (63)

Furthermore, they analysed its two biased-reduced modifications, which are similar, but
not absolutely equivalent, to those introduced by Caeiro et al. (2005) (Eq. (53) and (54)):

γ̂
β̂,ρ̂
(k) = γ̂B (k)

�

1−
β̂

(1− ρ̂)2
�n

k

�ρ̂�

, (64)

γ̂
β̂,ρ̂
(k) = γ̂B (k)exp

�

−
β̂

(1− ρ̂)2
�n

k

�ρ̂�

. (65)

6. ESTIMATORS WHICH ALLOW FOR NEGATIVE γ

The advantage of tail-index estimators based on extreme value distribution and GPD
over those based on the Pareto is that γ is not limited to positive values. Often estima-
tors allow for γ ∈ R, negative values corresponding to distributions with a finite right
endpoint. However, they usually have a higher asymptotic variance than estimators for
positive γ . The consistency of these estimators is usually shown under assumptions A6
or A7. We separate the estimators into two groups: quantile-type and moment-type.
But first, we discuss the Smith estimator, which does not fall into either of these groups.
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6.1. Smith estimator

Smith (1987) suggested the following tail index estimator based on the GPD:

γ̂ =
1
m

m
∑

i=1

log (1+Yi/u), (66)

where u is a relatively high threshold, Yi = Xi − u, where i is the index of the i th
exceedance and m is the number of observations higher than u. A number of other
estimators based on GPD is summarised further in the section of parametric estimators.

6.2. Quantile-type estimators

6.2.1. Pickands estimator
Pickands III (1975) proposed a simple method considering the quartiles of the k largest
observations. Under the assumption that the tail of the distribution satisfies assump-
tion A6, he found analytical expressions for the 3/4 and 1/2 quartiles and, substituting
theoretical quartiles with their empirical counterparts, received the following tail-index
estimator:

γ̂ P
n (k) =

1
log2

log
�X(n−bk/4c)−X(n−bk/2c)

X(n−bk/2c)−X(n−k)

�

, (67)

where buc denotes the integer part of u. A good property of the Pickands estimator is
that it is location invariant, i.e. the estimate does not change if the sample is shifted by
a constant.

6.2.2. Falk estimator
Falk (1994) suggested an improvement on the Pickands estimator by taking a linear com-
bination of two different numbers of observations treated as the tail.

γ̂ (k , p) = p γ̂ P
n ([k/2])+ (1− p)γ̂ P

n (k), p ∈ [0,1] (68)

The optimal level of p depends on the parameter γ itself:

po pt =
�

(2−2γ + 2)+ 21−γ �/
�

3(2−2γ + 2)+ 22−γ �.

Therefore, γ needs to be preestimated. Falk argued that, in order to calculate po pt , it
may be wise to take γ = 0, which is a turning point between the finite and infinite right
endpoint cases. In this case, po pt = 5/13. The author also claimed that the resulting
estimator outperforms the Pickands estimator in most cases apart from that of normal
distribution.
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6.2.3. Drees improvements of the Pickands estimator
Drees (1995) extended Falk’s refinement of the Pickands estimator to

γ̂ =
mn
∑

i=1

cn,i γ̂
P
n (4i), (69)

where mn is an intermediate sequence and cn,i , i = 1, ..., m are weights 0 ≤ cn,i ≤ 1,
which sum to unity. The author sets some restrictions on the choice of mn and cn,i to
show asymptotic normality, and also discusses an optimal choice for weights; however,
this choice depends on parameter γ and it is rather tricky (see pages 2064-2065 in the
above-mentioned paper).

Drees (1996) proposed another refinement of the Pickands estimator. He noticed
that its bias can be estimated as b̂ =

�

γ̂ P
n (k)−γ̂ P

n ([k/2])
�2
/
�

γ̂ P
n (k)−2γ̂ P

n (k/2)+γ̂
P
n (k/4)

�

.

Therefore, Pickands estimator can be corrected as γ̂ P
n (k)− b̂ , where for an estimation

of b̂ a preestimated value of γ̂ is used. Similarly, estimator (69) was refined as

γ̂ =
∫

γ̂ P
n (bk t c)ν(d t )−

�∫

γ̂ P
n (bk t c)− γ̂ P

n (bk t c)ν(d t )
�2

∫

γ̂ P
n (bk t c)− 2γ̂ P

n (bk t/2c)+ γ̂ P
n (bk t/4c)ν(d t )

, (70)

where ν(·) denotes a probability measure on the Borel-σ -field B[0,1].
Drees (1998b,a) proposed a generalized form of the Pickands estimator: T (Qn),

where T (·) is a smooth functional and Qn is a quantile function Qn(t ) = F −1
n

�

1 −
t kn/n

�

= X(n−bkn t c), and F −1
n is an empirical quantile function. Although this gener-

alized form is of limited value to practitioners (because the choice of the functional T (·)
is rather complicated), it may simplify the introduction of new estimators, which can
be expressed in a similar form.

6.2.4. Yun estimator
Yun (2002) generalized the Pickands estimator in the following way:

γ̂n,m(u, v) =
1

log v
log

X(m)−X(bu mc)

X(bv mc)−X(buv mc)
, u, v > 0, u, v 6= 1, (71)

where m ≥ 1, bu mc, bv mc, buv mc ≤ n. Pickands estimator corresponds to γ̂n,m(1/2,1/2).
With optimal values of u and v it is possible to reduce the asymptotic variance of the
estimator (see the paper for a numeric algorithm). We should also mention that Fraga
Alves (1995) had already analysed an estimator of the γ̂n,m(c , c) form, and that Yun (2000)
introduced a less general estimator γ̂n,m(c , 4/c) (1/4< c < 1).
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6.2.5. Segers 2005 generalized Pickands estimator
Segers (2005) proposed the following generalization of the Pickands estimator:

γ̂ (c ,λ) =
k
∑

j=1

�

λ
� j

k

�

−λ
� j − 1

k

�
�

log(X(n−bc j c)−X(n− j )), (72)

where λ(·) is a signed Borel measure on the (0,1] interval. The paper discusses an adap-
tive procedure for optimal λ(·) selection.

6.2.6. Müller and Rufibach smooth estimators
Müller and Rufibach (2009) noted that order statistics X(i) can be rewritten as F −1

n (i/n),
i = 1, ..., n, where Fn(·) is an empirical distribution function of X . They suggested
substituting Fn with a smooth estimate of the empirical distribution function F̃n . The
methods for such a smoothing are well known and date back to the seminal work of
Nadaraya (1964). They proposed estimators:

γ̂1(H ) =
1

log2
log

� H−1
�

(n− r (H )+ 1)/n
�

−H−1
�

(n− 2r (H )+ 1)/n
�

H−1
�

(n− 2r (H )+ 1)/n
�

−H−1
�

(n− 4r (H )+ 1)/n
�

�

, (73)

γ̂2(H ) =
1

k − 1

k
∑

j=2

log
�X(n)−H−1

�

(n− j + 1)/n
�

X(n)−H−1
�

(n− k)/n
�

�

, (74)

where

r (H ) =
�

bk/4c if H = Fn
k/4 if H = F̃n

γ̂1 is valid for k = 4, ..., n and γ̂2 for k = 3, ..., n− 1. If H = Fn , γ̂1 and γ̂2 boil down
to Pickands’ (Eq. (67)) and Falk’s (Eq. (68)) estimators.

6.3. Moment-based estimators

6.3.1. Moment estimator
Dekkers et al. (1989) proposed a moment estimator of the following form:

γ̂M
n (k) =M (1)

k ,n + 1− 1
2

�

1−

�

M (1)
k ,n

�2

M (2)
k ,n

�−1

, (75)

where M (i)
k ,n , i = 1,2, is defined in Eq. (3). To show the consistency of the moment

estimator, assumption B1 about the behavior of k was changed to k(n)/ log nδ →∞
as n→∞ for some δ > 0. The moment estimator was also adopted for censored data
(Beirlant et al., 2007).
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6.3.2. Gronenboom et al. kernel estimator
Following Dekkers et al. generalization of the Hill estimator (75), Groeneboom et al.
(2003) generalised a kernel estimator (5) for γ ∈ R. It has the following form: γ̂ =
γ̂K

n (k)− 1+ q1/q2, where γ̂K
n (k) is defined in Eq. (5) and

q1 =
n−1
∑

i=1

� i
n

�t

Kh

� i
n

�

(logX(n−i+1)− logX(n−i)). (76)

q2 =
n−1
∑

i=1

d
d u
[u t+1Kh (u)]t=i/n(logX(n−i+1)− logX(n−i)).

Kh (u) = K(u/h)/h, t is a tuning parameter t > 0.5, and h is a bandwidth (h > 0). As
well as the assumptions used by Csörgő et al., there are also assumptions that K , K ′ and
K ′′ are bounded.

6.3.3. Fraga Alves et al. 2009 mixed moment estimator
Fraga Alves et al. (2009) considered the conditions a distribution function should follow
in order to be in the domain of attraction of the generalized extreme value distribution
function. These conditions were introduced by De Haan (1970). Having substituted
these conditions with their empirical counterparts, they received the following estima-
tor, which is valid for γ ∈ R:

φ̂n(k) =
�

M (1)
k ,n − Ln,k

�

/
�

Ln,k

�2,

where M (1)
k ,n is defined in Eq. (3), and Ln,k :

Ln,k =
1
k

k
∑

i=1

�

1−
X(n−k)

X(n−i+1)

�

.

γ̂M M =
φ̂n(k)− 1

1+ 2min(φ̂n(k)− 1,0)
. (77)

They also considered a location-invariant peaks-over-random threshold (PORT) ver-
sion of this estimator, when the original sample Xi is replaced by X ∗i = Xi −X([n p]+1),
with a tuning parameter p, 0< p < 1.

7. GENERALISED CLASSES OF ESTIMATORS

7.1. Gomes and Martins generalizations of the Hill estimator

Gomes and Martins (2001) introduced two estimators which generalize the Hill estima-
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tor:

γ̂ (l )1 (k) =
M (l )

k ,n

Γ (l + 1)[γ̂ (1)(k)]l−1
, (78)

γ̂ (l )2 (k) =
� M (l )

k ,n

Γ (l + 1)
.
�

1
l

, (79)

where l > 0 and M (l )
k ,n is defined in (3). If l = 1, they reduce to the Hill estimator. Es-

timator (79) is a special case of a class of estimators introduced by Segers (2001). More-
over, both estimators are special cases of a very general class of estimators introduced by
Paulauskas and Vaičiulis (2017a).

7.2. Caeiro and Gomes generalized class of estimators

Caeiro and Gomes (2002) proposed another generalized class of estimators:

γ (l )n (k) =
Γ (α)

M (l−1)
k ,n (k)

� M (2l )
k ,n (k)

Γ (2l + 1)

�1/2

, α≥ 1, (80)

l is a tuning parameter and M (0)
k ,n(k) = 1. When l = 1, the Caeiro and Gomes estimator

(80) and the Gomes and Martins estimator (79) (with the same l ) coincide. An optimal
l̂ is given by

l̂ =−
log[1− ρ̂−

p

(1− ρ̂)2− 1]
log(1− ρ̂)

,

where ρ̂ is a consistent estimate of the second-order parameter. Gomes et al. (2004)
showed that estimator (80) may achieve a higher efficiency in comparison to the Hill
estimator, if the number of top-order statistics is larger than the one usually used for the
estimation through the Hill estimator.

7.3. Mean-of-order-p class of estimators

The mean-of-order-p class of estimators was independently introduced by Brilhante et al.
(2013); Beran et al. (2014). The authors noticed that the Hill estimator can be expressed
as the natural logarithm of geometric mean of Vi ,k , 1≤ i ≤ k. Vi ,k is defined in Eq. (2).
They proposed generalizing it to the following mean-of-order-p form:

γ̂ (p) =











1
p

�

1−
�

1
k

∑k
i=1 V p

i ,k

�
�

if p ≤ 1/γ , p 6= 0,

log
�

∏k
i=1 Vi ,k

�1/k
if p = 0.

(81)
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Under assumption A4, Brilhante et al. (2014) found an optimal p to be equal to
p∗ = φρ/γ , where φρ = 1− 0.5ρ− 0.5

p

ρ2− 4ρ+ 2, φρ ∈ (0,1−
p

2/2], and ρ is the
second-order parameter.

Caeiro et al. (2016) noticed that under assumption A3 this estimator is biased, and
suggested reducing the bias in the following way:

γ̂ (p,β,ρ,φ) = γ̂ (p)
�

1−
β(1−φ)
1−ρ−φ

�n
k

�ρ�

(82)

β is a second-order parameter D = γβ, and D is defined in assumption A3. Parameters
β and ρ can be estimated (see the above-mentioned paper), φ= p γ̂ (p). Taking p as in
Brilhante et al. (2014) is suggested.

Gomes et al. (2016) suggested replacing Xi with X ∗i = Xi −X([nq]+1), with a tuning
parameter q , 0 < q < 1 (PORT methodology) and yielded the optimal choice of k:
k̂∗ =

�

(1− ρ̂)n−ρ̂/(β̂
p

−2ρ̂)
�2/(1−2ρ̂).

7.4. Segers (2001) generalized class of estimators

Segers (2001) showed that the statistics Rn,k ,

Rn,k =
1
k

k
∑

j=1

f (X(n− j+1)/X(n−k)),

converges in probability to E[ f (Y γ )], if f : [1 :∞)→ R is an almost everywhere (in
terms of Lebesgue measure) continuous function and | f (x)| ≤ Ax (1−δ)/γ , for some A>
0, δ ∈ (0,1) and x ≥ 1. This finding gave raise to a number of methods of tail-index es-
timators. For example, under some additional technical assumptions if f (y) = (log y)β,
with β> 0, the tail-index estimator reduces to one of the estimators studied by Gomes
and Martins (2001) (Eq. (79)). f (x) = x−p with p > −1/γ yields the following estima-
tor:

γ̂ =
1
p

��

1
k

k
∑

j=1

� X(n−k)

X(n− j+1)

�p�−1

− 1
�

(83)

The authors also showed that in this class of estimators the Hill estimator has the small-
est asymptotic variance.

7.5. Ciuperca and Mercadier generalized class of estimators

Ciuperca and Mercadier (2010) analysed in detail the following class of estimators:

γ̂ (g , l ) =

1
k

∑k
i=1 g

� i
k+1

�

h

log
X(n−i+1)

X(n−k)

il

∫ 1
0 g (x)(− log (x))l d x

, (84)
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where l > 0 and g (x) is a positive, non-increasing and integrable weight function defined
on (0,1). It is assumed that δ > 0.5 satisfying

∫ 1
0 g (x)x−δd x <∞ and 0<

∫ 1
0 g (x)(1−

x)−δd x <∞ exists. γ̂ (1,1) is the Hill estimator (Eq. (4)), γ̂ (1, l ) - Gomes and Martins
(2001) (Eq. (79)), γ̂ (g , 1) - corresponds to the weighted least squares estimator of Hüsler
et al. (2006) (Eq. (15)).

7.6. Generalisation of a few estimators applying a Box-Cox transformation

Paulauskas and Vaičiulis (2013) applied a Box-Cox transformation to the Hill and a few
other estimators:

fr (x) =
x r − 1

r
, −α < r <∞, r 6= 0; f0(x) = log x.

Define

H l
n(k , r ) =

1
k

k−1
∑

i=0

f l
r

�X(n−i)

X(n−k)

�

, l = 1,2.

λ̂1
n(k , r ) =H (1)n (k , r ),

λ̂2
n(k , r ) =H (1)n + 1− 1

2

�

1−
H (1)n (k , r )H (1)n (k , 2r )

H (2)n (k , r )

�−1

,

λ̂3
n(k , r ) =

H (2)n (k , r )

2H (1)n (k , 2r )
.

The tail index estimators are received from the relation:

γ (l )(k , r ) =
λ(l )(k , r )

1+ rλ(l )(k , r )
, l = 1, ..., 3. (85)

The estimator γ 1
n (k , r ) generalizes the Hill estimator (Eq. (4)) and it is similar to the

Segers estimator (83). With the appropriate choice of r , this estimator has a lower
asymptotic variance compared to the classical Hill estimator. γ 2

n (k , r ) generalizes mo-
ment estimator (Eq. (75)), and γ 3

n (k , r ) - Danielsson et al. estimator (Eq. (8)).
In a subsequent work, Paulauskas and Vaičiulis (2017a) introduced a new general

class of estimators.
gr,u (x) = x r logu (x),

Gn(k , r, u) =
1
k

k−1
∑

i=0

gr,u

�X(n−i)

X(n−k)

�
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They analysed a large number of estimators expressed in terms of statistics Gn(k , r, u),
and also introduced a couple of new estimators:

γ̂4 =
2Gn(k , r, 1)

2r Gn(k , r, 1)+ 1+
p

4r Gn(k , r, 1)+ 1
(86)

γ̂5 =
§

(r Gn(k , r, 1)−Gn(k , r, 0)+ 1)(r 2Gn(k , r, 1))−1 if r 6= 0,
γ̂M R(k) if r = 0,

where γ̂M R(k) corresponds to the Danielsson et al. estimator (Eq. (8)) with l = 1.

8. STABLE DISTRIBUTION TAIL-INDEX ESTIMATORS

These tail-index estimators are developed under assumption A8. For a review of classical
methods for parameter estimation of specific stable distributions please see Mittnik and
Rachev (1993). Below, we provide a few more general methods. First, it is important to
note that in case of stable distribution tail indexes 0<α < 2 correspond to heavy-tailed
distributions with corresponding tail indexes; however, case α = 2 corresponds to the
normal distribution.

8.1. De Haan and Resnick estimator

De Haan and Resnick (1980) introduced a simple estimator of the following form:

γ̂H R
n (k) =

logX(n)− logX(n−k+1)

log k
. (87)

The weakness of this estimator is that it converges to its limit at a very slow rate
(log−1 n).

8.2. Bacro and Brito

Bacro and Brito (1995) modified the De Haan and Resnick estimator by excluding a
(small) number of the highest-order statistics:

γ̂ BB
n (k) =−

logX(n−bνkc+1)− logX(n−k+1)

log ν
, 0< ν < 1. (88)

ν is a fixed constant.
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8.3. De Haan and Pereira estimator

De Haan and Pereira (1999) suggested another estimator based on assumption A8 of the
following form:

β̂n =
kX 2
(n−k)

∑n−k
i=1 X 2

(i)

(89)

An interesting property is that it uses lower order statistics than n− k.

8.4. Fan estimator

Fan (2004) suggested an estimator based on permutations. First define h(x1, ..., xm) =
(log m)−1 log(

∑m
i=1 xi ).

γ̂ = ( n
m)
−1

∑

1≤i1<...<im≤n

h(Xi1
, ...,Xim

). (90)

Summation is made over all combinations of observations. But, if permutations
consume too much time, they can be changed by resampling. The interpretation of m
differs from k in other methods. Its meaning is closer to a window of a kernel function.
Nevertheless, the assumptions are similar m→∞ and m = o(n1/2) as n→∞.

8.5. Meerschaert and Scheffer estimator

The properties of the growth rate of the logged sample second moment led to a simple
estimator introduced by Meerschaert and Scheffler (1998). It has the following form:

γ̂ =
log+

∑n
i=1(Xi − X̄n)

2

2 log n
, (91)

where log+(x) = max(log x, 0) and X̄n is the sample mean. The estimator is consistent
for α ∈ (0,2], asymptotically unbiased and asymptotically log stable if the data are in the
domain of attraction of a stable law; however, the estimator is not scale-invariant.

8.6. Politis estimator

A similar method based on the divergence speed of a logged sample second moment was
introduced by Politis (2002). Define S j = j−1∑k

i=1 X 2
i and Y j = log S j . Politis noticed

that the tail index can be derived from the slope of Y j regression on log j . The estimator
of α is designed as follows:

µ̂=

∑n
j=1(Y j − Ȳ )(log k − log n)
∑n

j=1(log j − log n)2
.
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α̂=
2

µ̂+ 1
, (92)

where Ȳ = n−1∑k
j=1 Y j and log n = n−1∑n

j=1 log j . The estimator is consistent for
α ∈ (0,2]. Similarly to the Meerschaert and Scheffer estimator, the Politis estimator is
not scale invariant. Also, different permutations of the data may lead to different results.
To deal with this problem, the author suggests applying the estimator for a number of
permutations and taking the median value of the estimates. The method can be applied
to time series.

8.7. McElroy and Politis estimators

McElroy and Politis (2007) modified the Meerschaert and Scheffer estimator (Eq. (91))
in the following way:

γ̂r =
log

∑n
i=1 X 2r

i

2r log n
, (93)

where r is large enough so that the 2r -th moment does not exist. The bias of this esti-
mator reduces slowly. McElroy and Politis also studied reduced bias estimators:

γ̂C EN
n =

log Sn(X
2)− log Spn(X

2)

2 log n
.

where Sn(X
2) =

∑n
i=1 X 2

i and Spn(X
2) is the sum of the first

p
n squared observations.

They also suggested splitting a sample into M non-overlapping groups of size b 2 (b
should be relatively small, such as n1/3), and compute

γ̂ SC EN =
1
M

M
∑

m=1

γ̂C EN (m)
b 2 , (94)

where γ̂C EN (m)
b 2 is defined as γ̂C EN

b 2 estimated on data points {(m− 1)b 2+ 1, ..., mb 2}.
Alternatively, denote

S ( j )d (X
2) =

j d
∑

i=( j−1)d+1

X 2
i .

γ̂RC EN
b 2 =

1
b

b
∑

j=1

log Sb 2(X 2)− log S ( j )b (X
2)

2 log b
. (95)

Also denote γ̂RC EN (m)
b 2 as γ̂RC EN

b 2 evaluated on data points {(m−1)b 2+1, ..., mb 2}. Then,
another estimator is

γ̂ SRC EN =
1
M

M
∑

m=1

γ̂RC EN (m)
b 2 . (96)

All enumerated estimators allow for time-series dependence in the data.
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9. SMALL-SAMPLE AND ROBUST ESTIMATORS

9.1. Knight estimator

Knight (2007) suggested a robust estimator of the following form. First, choose c , which
represents the level of robustness. Next, solve for φ(c) from equation

φ(c)+ exp(−{c +φ(c)}) = 1.

The estimator is defined as a solution for α̃

kn
∑

j=1

ψc (Uj , α̃n(c)) = 0, (97)

where Uj is defined in Eq. (1) and

ψc (x,α) =
§

x −φc/α if x ≤ (c +φ(c))/α
c/α otherwise.

If c =∞, the proposed estimator simplifies to the MLE.

9.2. Beran and Schell M-estimator

Beran and Schell (2012) suggested a small-sample M-estimator:

ψv (x,α) =max(α log(x)− 1, v)− (v + exp(−(v + 1)))

n
∑

i=1

ψv (Xi ,α) = 0, (98)

the estimator is the value of α, which solves Eq. (98). v is a constant v > −1. Higher
values of v lead to a larger degree of robustness and a larger bias, which does not vanish
asymptotically. An application of a similar M-estimator to Pareto-tail index estimation
was also discussed by Victoria-Feser and Ronchetti (1994); however, their algorithm is
very sensible to the choice of starting values.

9.3. Dupuis and Victoria-Feser weighted MLE

Dupuis and Victoria-Feser (2006) adjusted a more general weighted MLE of Dupuis and
Morgenthaler (2002) to tail index estimation. Its main idea is to analyse a quantile plot
first. Next, MLE is applied giving lower weights to observations, which result in resid-
uals of the quantile plot regressions exceeding a threshold.

k
∑

i=1

w(X(n−i+1);θ)
∂

∂ θ
log fθ(Xi ) = 0, (99)
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where fθ(Xi ) is the density function of the right tail of the distribution with parameters
θ (α ∈ θ) and w(X(n−i+1);θ) is a weight function:

w(X(n−i+1);θ) =
§

1 if |ε̂i |< c
c/|ε̂i | if |ε̂i | ≥ c .

c , is a parameter which controls for robustness (a lower c gives a higher level of ro-
bustness). ε̂i is a standardized residual of a quantile plot, i.e.: ε̂i = (Yi − Ŷi )/σi , σ

2
i =

∑i
j=1 1/[α̂2(k−i+ j )2], Yi = l o g (X(n−i+1)/X(k)), and Ŷi =−1/α̂ log[(k+1−i)/(k+1)].

The resulting estimator is biased, but the bias can be estimated and removed. For more
detail, see Lemma 5 in the above-mentioned paper.

10. PEAKS OVER RANDOM THRESHOLD (PORT) ESTIMATORS

The notion of PORT estimators was introduced by Santos et al. (2006). The need for
this class of estimators arises from the fact that most classical estimators are non-shift
invariant. Its general idea is that instead of the original (ordered) sample of size n, X =
{X(1), ...,X(n)}, a modified sample XPORT = {X(n−m+1)−X(m), ...,X(n)−X(m)} of n−m
largest observations is analyzed. The reduction of X(m) from the m largest observations
removes the shift existing in the data, and X(m) serves as a random threshold. If a classical
estimator for such a sample is applied, it becomes shift-invariant. Fraga Alves (2001)
applied this idea to the Hill estimator (Eq. (4)). She suggested using such m that (n −
m(n)) = o(n), (n−m(n))→∞ as n→∞, and k = o(n−m(n)), k →∞ as n→∞.
Santos et al. (2006) suggested using m = nq + 1, 0< q < 1. If the distribution function
underlying the initial sample X has a finite left endpoint, q = 0 can also be applied.3

Apart from the Hill estimator, they also applied this idea to the moment estimator (75).
Similarly, Fraga Alves et al. (2009) introduced a PORT modification of their estimator
(77) and Gomes et al. (2016) developed PORT methodology for mean-of-order-p class
of estimators (81). One of the estimators studied by Gomes and Henriques-Rodrigues
(2016) was a PORT version of the Caeiro et al. (2005) estimator (53). Li et al. (2008)
developed PORT methodology for the Caeiro and Gomes estimator (80).

11. BLOCK ESTIMATORS

11.1. Davydov, Paulauskas, Račkauskas (DPR) estimator

LePage et al. (1981) studied asymptotic properties of order statistics in case of the domain
of attraction of a non-Gaussian stable law. Based on their findings, Davydov et al. (2000)
proposed a (DPR) estimator, which was further studied by Paulauskas (2003). Its idea
is the following: Divide the sample into T groups V1, ...,VT of size m. It is assumed

3 However, Gomes et al. (2008) expressed caution about using q = 0.
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that m → ∞,T → ∞ as n → ∞ unless the sample is not entirely from the Pareto
distribution. In the former case it is better to take m = 2. Denote the largest observation
in group V j as M (1)

j and M (2)
j - the second largest observation in the same group. Also

denote

ZT =
1
T

T
∑

j=1

M (2)
j

M (1)
j

.

They showed that

α̂=
ZT

1−ZT
(100)

is an asymptotically unbiased tail-index estimator. The proper choice of m is rather
tricky, but it is possible to make a plot (m, α̂m), 2 ≤ m ≤ n/2, similar to Hill plots
(Paulauskas, 2003). To improve the finite sample properties of this estimator it is wise
to apply it to different permutations of the sample, and then take an arithmetic mean or
median of the estimates.

11.2. Vaǐciulis’ bias reduced DPR

Intending to reduce the bias of the DPR estimator, Vaičiulis (2012) introduced the fol-
lowing modification:

ZT ,r =
1
t

T
∑

j=1

fr

�M (2)
j

M (1)
j

�

, fr (b ) = logr 1
b

.

α̂l =
∑l

r=1(−1)r+1
�

Γ (r + 1)
�−1ZT ,r

∑l+1
r=2(−1)r

�

Γ (r + 1)
�−1ZT ,r

, l ∈N . (101)

If l is even, α 6= 1.

11.3. Generalised DPR estimator

Paulauskas and Vaičiulis (2011) suggested applying a Box-Cox transformation to the
DPR estimator (Eq. (100)):

Zt =−
1
T

T
∑

j=1

fr

�M (2)
j

M (1)
j

�

,

where fr () is a Box-Cox transformation defined in section 7.6.

α̂r =
1− r ZT

ZT
. (102)
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If 1− F (x) = C1x−α +C2x−β+ o(x−β), with 0 < α < β ≤∞, the optimal r ∗ and
m∗ have the following expressions:

r ∗ =−1
2

�

α+β−
Æ

(α+β)2− 2α2
�

.

m∗ =
�2nζ (α+ 2r ∗)

α

�C2βζ Γ (β/α)

Cβ/α(β+r ∗)
1

�2� 1
1+2ζ

where ζ = (β−α)/α. Nevertheless, the Hill estimator with a properly selected k∗ has
a lower variance than the optimal generalized DPR estimator. See also Paulauskas and
Vaičiulis (2012) for applications of this estimator for max-aggregated data.

11.4. Vaǐciulis (2009) estimator

Vaičiulis (2009) proposed an estimator based on an increment ratio statistics:

I Rn,m :=
1

n− 2m+ 1

n−2m
∑

i=0

|
∑i+m

t=i+1 X 2
t −

∑i+2m
t=i+m+1 X 2

t |
∑i+m

t=i+1 X 2
t +

∑i+2m
t=i+m+1 X 2

t

,

where m is a bandwidth. Using Monte-Carlo simulations, he suggested the following
expression for I Rn,m conversion to α̂

α̂≈
�

2.0024− 0.4527I Rn,m + 0.4246I R2
n,m − 0.1386I R3

n,m

�

cos
�πI Rn,m

2

�

. (103)

11.5. Qi estimator

Qi (2010) adopted the idea of the DPR estimator to modify the Hill estimator. Obser-
vations are divided into T groups, of size mi , i = 1, ...,T . Then, the Hill estimator for
each group is applied, and their arithmetic mean is taken:

γ̂ =
1

∑T
i=1 ki

T
∑

i=1

ki
∑

j=1

(logX (i)(mi− j+1)− logX (i)(mi−ki )
), (104)

where X (i)(mi− j+1) denotes the mi− j+1-th order statistics in group i , and ki is the group-
specific number of observations treated as the tail.

11.6. Fialova et al. estimator

Fialová et al. (2004) suggested an estimator which takes all observations into account;
however, it requires some preliminary knowledge of the tail index. The sample size n
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is randomly partitioned into T non-overlapping sub-samples of size m: (X (1)1 , ..,X (1)r ),
..., (X (T )1 , ..,X (T )r ). Denote (X̄ (1), ..., X̄ (T )) as a vector of arithmetic means of the sub-
samples. Denote F̂ (T )

X̄n
(x) = T −1∑T

i=1 1(X̄
(i) ≤ x) the distribution function of the sub-

sample means. Also, suppose there is preliminary information that tail index α is lower
than a certain value α0. I.e. the tail is heavier than that of a Pareto distribution with the

tail index α0. Then, choose xT = T
1−δ
α0 , for a fixed δ, 0<δ < 1 and calculate

α̃(xT ) =−
log

�

1− F̂ (T )
X̄n
(xT )

�

log xT
,

α̂(xT ) = α̃(xT )1
�

0< F (T )
X̄n
(xT )< 1

�

+ α̃01
�

F (T )
X̄n
(xT ) = 0 o r 1

�

. (105)

α̂(xT ) is the tail index estimator.

11.7. Jurečková and Picek estimator

Jurečková (2000) and Jurečková and Picek (2001) suggested a semiparametric test for a
hypothesis that the right tail of a distribution is heavier than that of a Pareto distribution
with the tail index α0. Jurečková and Picek (2004) reversed the question, and suggested
using the underlying idea of these tests for tail-index estimation. Split the sample into
T nonintersecting subsamples of size m and denote the maximal element of subsample
j as X j

(m). Denote F̂ ∗(a) = T −1∑T
j=1 1[X

j
(m) ≤ a] - the empirical distribution of the

subsamples’ maxima, and aT ,s = (mT 1−δ )
1
s , 0<δ < 1/2. The estimator is defined as

α̂T =
1
2
(α̂+T + α̂

−
T ), (106)

where
α̂+T = sup{s :

�

1− F ∗(aT ,s )
�

< T −(1−δ)},

α̂−T = inf{s :
�

1− F ∗(aT ,s )
�

> T −(1−δ)}.

12. PARAMETRIC METHODS

The peculiarity of parametric methods is that they employ the assumption that the en-
tire sample is drawn from a distribution function with a specific functional form, while
the semi-parametric methods discussed above are less restrictive because they assume
some regularity in the tail behaviour only.
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12.1. Brazauskas and Serfling estimator

Brazauskas and Serfling (2000) assumed an exact Pareto distribution as in assumption A1,
with L(x) =C , where C is a known constant, x ≥C . They suggested using MLE for k
arbitrary observations: γ̂ (x1, ..., xk ) = k−1∑k

j=1 log x j − logσ , where σ is a known scale
parameter. Having calculated γ̂ (x1, ..., xk ) for all possible combinations of Xi1

, ...,Xik
,

they get a vector H of n!/(k!(n − k)!) size of γ estimates. As a final estimator, they
suggested using

γ̂ =median(H ) (107)

12.2. Finkelstein et al. estimator

Finkelstein et al. (2006) proposed estimating parameter α by solving an equation

n−1
n
∑

i=1

� C
Xi

�α̂t

=
1

t + 1
, t > 0 (108)

for α̂. t is a tuning parameter.
The intuition of the method is as follows: (C/X j )

α has a uniform distribution; there-
fore, if α̂ is relatively close to α, the left side of Eq. (108) is distributed like the arithmetic
mean of uniform random variables raised to power t . Having substituted this mean with
the mathematical expectation, which equals (1+ t )−1, Eq. (108) is received. Brzezinski
(2016) argued that this estimator has desirable properties as a compromise between ease
of use and robustness against outliers in a small-sample setting.

12.3. McElroy parametric estimators

McElroy (2007) used the properties of Var(log |X |) for the derivation of parametric
tail-index estimators for a number of specific heavy-tailed distribution functions. It
was assumed that the data is mean zero, or its location parameter is zero. Denote
V̂ = ÓVar(log |X |). V̂ is an empirical estimate of logged |X | variance. Denote, g (α) =
Var(log |X |). Hence, if g−1(·) exists, α̂= g−1(V̂ ).

For stable distribution the tail index estimator can be expressed as

α̂=
2

r

1+ 4V̂−Ψ2(1/2)
Ψ2(1)

, (109)

where Ψ2(·) denotes the second derivative of the log-gamma function. For Student’s
t-distribution the expression for g (·) is

g (α) =
1
2

�

Ψ2(α/2)+Ψ2(1/2)
�

. (110)
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There is no analytical expression for g−1 in this case, but α can be solved numerically.
If the data is drawn from a log-gamma distribution,

α̂=
p

6
q

V̂ dKur log |X |
, (111)

where dKur log |X | is an empirical estimate of the kurtosis of the logged data.
If the data comes from a Pareto-like distribution, the resulting estimator is

α̂=
1

q

V̂ −Ψ2(1/2)/4
. (112)

Estimator (112) allows for serially correlated data.

12.4. Hosking and Wallis estimators of the generalized Pareto distribution parameters

Hosking and Wallis (1987) analysed methods for parameters of the generalized Pareto
distribution estimation. They proposed three methods: the MLE, the method of mo-
ments, and the method of probability weighted moments. Their methods are based on
the assumption that the entire sample is drawn from the GPD. We do not present the
MLE here because it may provide parameters resulting in arbitrarily large values and
the need to search for a local maximum. In the above-mentioned paper, the Newton-
Raphson algorithm failed to converge in 91 samples out of 100 random starting values.
The method of moments results in the following γ estimator:

γ = 0.5(1− (X̄ )2/s2), (113)

where X̄ is the sample’s mean and s2 is its variance. The method works if γ < 1/2,
i.e. the second moment is finite, and normality is shown under the assumption of the
existence of the fourth finite moment. The third estimator presented by Hosking and
Wallis is the method of probability weighted moments. It has the following form:

γ̂PW M = X̄ /(2w − X̄ ), (114)

where w = n−1∑n
i=1(n− i)Xi/(n− 1).

Dupuis and Tsao (1998) modified this estimator for negative γ , to exclude cases where
the right endpoint of the distribution is estimated to be lower than the largest observa-
tion.

12.5. Zhang estimators

Zhang (2007) created a mix of the MLE and the moment estimator for the GPD. First,
equation for b is solved:

n−1
n
∑

i=1

(1− bXi )
p − (1− r )−1 = 0, b <X−1

(n) ,
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where p = r n/
∑

i=1 log (1− bXi ) and r is a tuning parameter, r < 1. It is also assumed
that rγ < 1. When r = −γ , the method becomes a pure MLE. The estimator of γ̂ is
given by

γ̂ = n−1
n
∑

i=1

log (1− b̂Xi ). (115)

In subsequent papers, Zhang and Stephens (2009) presented a Bayesian modification of
this method, and Zhang (2010) improved the Bayesian method for very heavy-tailed
(γ̂ > 1) distributions.

12.6. Wang and Chen estimator

Wang and Chen (2016) introduced another hybrid method for the GPD parameter esti-
mation. They suggested minimizing G(b )

G(b ) =−n−1
n
∑

i=1

n

(2i − 1) log[gi (b )]+ (2n+ 1− 2i) log[1− gi (b )]
o

. (116)

gi (b ) = 1− (1− bX(i))
−n/

∑n
j=1 log(1−θX j ), i = 1, ..., n.

with respect to b . Next, b̂ is plugged into Eq. (115).

12.7. Van Zyl (2012) estimator

Van Zyl (2012) noted that for a given γ the functional form of assumption A6 can be
rewritten as

�

1− F (x)
�−γ − 1

γ
=

x
σ
−
µ

σ
.

Denote F̂ (X(i)) = r/(n + 1) and F̂ (γ )(X(i)) - the Box-Cox transformation of 1− F (x),
which is given on the left side of the equation above. Next, for a number of γ the
regression

F̂ (γ )(X(i)) =β0+β1X(i)+ εi , i = 1, ..., n. (117)

is estimated. β1 = 1/σ , β2 = −µ/σ . εi are residuals of the model. It is assumed that
they are Laplace distributed. The shape parameter γ is chosen which performs best with
respect to the profile likelihood.

12.8. Van Zyl (2015) estimator

Van Zyl (2015) suggested normalizing observations before estimating the tail index.
Namely, Zi = µ

�

(γ/σ)Xi + (1− γµ/σ)
�

, where µ, σ and γ are the location, scale and
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shape parameters of the GPD. The preliminary values of these parameters can be re-
ceived using MLE or other methods. For example, γ̂ can be estimated with the Hill
estimator (Eq. (4)), µ̂= X(1), σ̂ can be estimated numerically (see the above-mentioned
paper, pages 173-174).

γ̂Z =
1
n

n−1
∑

i=0

log
�

Zi/µ]. (118)

The method works under assumptions that (γ̂ /σ̂)Xn−i+1−γ̂ µ̂/σ̂ > 0, i = 0, ..., (n−
1) and 0< γ < 1.

13. MONTE CARLO EXPERIMENT

In this section, we compare the performance of more than 90 estimators on finite sam-
ples; to that end we carry out four experiments. Results are presented in Tables 1-4.
First, we applied the estimators for i.i.d. samples drawn from a Pareto distribution with
scale and shape parameters equal to 1; n=100 and 10,000; k or a similar parameter was
equalized to 2

p
n, i.e. 20 and 200. In PORT versions of the estimators we set m = qn+1

with q = 0.1. Second, we generated random variables as X =X1+X2, where X1 denotes
a random variable drawn from a Pareto distribution with scale and shape parameters
equal to 1, and X2 - is independently drawn from a Pareto distribution with the shape
parameter equal to 2; the scale parameter still being equalized to 1. In all cases, the ‘true’
tail index equals to 1, and in the second case, the second-order parameter equals to 2. We
performed 1000 Monte-Carlo simulations for each estimator. In Tables 1-4 we present
standard deviations of estimates from the true value of the tail index.

Excellent performance was shown by the Schultze & Steinebach estimator (13), whose
errors are lower on average than those of the other estimators. Good performance was
also found with the De Haan and Pereira estimator (89) and the Gomes et al. (2016)
PORT version of the mean-of-order-p estimator (81). Good small sample properties
were shown by the Tripathi et al. (29), Meerschaert & Scheffer (91) and Jurečková &
Picek (106) estimators. There are many well-performing estimators in large samples.
The McElroy & Politis (96) and DPR (100) estimators perform well in large samples
with and without a finite second-order parameter. The Hill estimator also performs
well.

Tables 1, 2, 3, and 4 present time (in minutes) needed to perform Monte-Carlo sim-
ulations for every estimator. The experiments were performed on a computer with i7-
3630QM (2.4GHz) processor and 6GB installed memory (RAM). For most estimators,
Monte-Carlo simulations took around three minutes. The least time consuming esti-
mators are: De Haan and Resnick (87), Hosking and Wallis (113), Pickands (67), Falk
(68). Monte-Carlo simulations for most jackknife-type estimators lasted around four
minutes. The computational time for block estimators is considerably longer: 47-51
minutes. This is due to the fact that computations were made for 500 random permuta-
tions of each sample.
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1.05
0.28

49.9
Fialova

etal.
(105)

0.59
0.25

0.81
0.26

3.04
Jurečková&

Picek
(106)

0.22
0.10

0.19
0.10

51.4
δ
=

0.05
H

osking&
W

allis
(113)

20.5
1.34

44.2
1.39

2.84
van

Zyl
(117)

0.25
0.07

0.45
0.09

2.87
Brito&

Freitas
0.30

0.10
0.36

0.10
3.07
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The most time-consuming estimator is the Gomes et al. (44) jackknife estimator.
The corresponding Monte-Carlo simulations lasted more than fifteen hours because all
possible permutations must be used. In general, greater time consumption in our simu-
lations was not compensated by greater accuracy in the results.
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APPENDIX

A. NOTATION AND ABBREVIATIONS

TABLE 5
Notation and abbreviations

Symbols Explanations

Xi i -th observation
X(i) i -th order statistics
n Sample size
k Number of largest observations under analysis
α Tail index
γ Extreme value index γ = α−1 (EVI)
L(x) Slowly varying function, limt→∞ L(t )/L(t x)→ 1 as t →∞, ∀ x > 0
1(u) Unit indicator function, 1(u) = 1 if u is TRUE, 0 otherwise
K(·) Kernel function
ξ Bandwidth
buc the integer part of u
ML Maximum Likelihood
MLE Maximum Likelihood Estimator
GPD Generalized Pareto distribution
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SUMMARY

Heavy-tailed distributions are often encountered in economics, finance, biology, telecommunica-
tions, geology, etc. The heaviness of a tail is measured by a tail index. Numerous methods for
tail index estimation have been proposed. This paper reviews more than one hundred Pareto (and
equivalent) tail index estimators. It focuses on univariate estimators for non-truncated data. We
discuss the basic features of these estimators and provide their analytical expressions. As sam-
ples from heavy-tailed distributions are often analysed by researchers from various sciences, the
paper provides nontechnical explanations of the methods, so as to be understood by researchers
with intermediate skills in statistics. We also discuss the strengths and weaknesses of the estima-
tors, if known. The main focus of the paper is semi-parametric estimators; however, a number of
parametric estimators under-represented in previous reviews are also discussed. The paper can be
viewed as a catalog or a reference work on Pareto-tail index estimators. A Monte-Carlo compari-
son of more than 90 estimators is presented.

Keywords: Heavy tails; Pareto distribution; Tail index; Review.
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