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THE CONSTRUCTION OF COMBINED BAYESIAN-FREQUENTIST 
CONFIDENCE INTERVALS FOR A POSITIVE PARAMETER 

M. Akahira, A. Shimizu, K. Takeuchi 

1. INTRODUCTION

In the case when a parameter is assumed to be nonnegative or positive-valued, 
we consider an interval estimation problem on an unknown parameter based on 
the observations including errors. If the magnitude of errors is almost same size 
as that of the value of the parameter, the ordinary confidence interval in which 
the parameter is not considered to be nonnegative involves a set of negative val-
ues, and the interval restricted to nonnegative ones can be degenerate. On the 
above problem, various methods to construct such confidence intervals are pro-
posed by many physicists and others (see, e.g. Feldman and Cousins (1998), 
Mandelkern (2002), Mandelkern and Schultz (2000a, 2000b) and Roe and Wood-
roofe (1999, 2001)). But, from the viewpoint of statistics, the problem is very 
simple and clear. Indeed, there are basically two ways to construct Bayesian and 
frequentist confidence intervals. 

In the Bayesian case, it is enough to confine a prior distribution to the set of 
existence of a parameter, and in such a case, consideration whether the prior one 
is appropriate or not is necessary, but it is essentially same as the ordinary Bayes-
ian case. 

From the viewpoint of frequentist, we consider a set of testing hypothesis and  
take a corresponding acceptance region. Indeed, let 0 > 0, and we consider the prob-
lem of testing the hypothesis H:  = 0 against the alternative K: 0, > 0 with 
level . Let A( 0) be an acceptance region of the test, and for a random sample X

0 0( ) : { | ( )}.S X X A

Since, for >0, 

{ ( )} { ( )} 1 ,P S X P X A

it follows that a confidence region S(X) for of confidence coefficient 1 is ob-
tained (see, e.g. Lehmann (1986), Bickel and Doksum (2001)). In particular, if 
S(X) becomes an interval, then it is called a confidence interval. 
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Now, the problem is a better choice of the test procedure in such a testing 
problem. Noting that a method of unbiased tests can not be applied to the above 
testing problem, we propose the following procedure in this paper. Assume that a 
real random variable X has a probability density function (p.d.f.) f (x, ) (w.r.t. the 
Lebesgue measure), where > 0, Then we consider the problem of testing the 
hypothesis H:  = 0 (> 0) against the alternative K: 0, > 0. Let  be a prior 
distributions defined on the interval (0, ), and take the alternative

0
: ( ) : ( , ) ( ).K f x f x d

Here, f might be improper. And we consider the problem of testing the hypothe-
sis H0: f (x, 0) against the alternative K : f (x). Then the acceptance region of the 
most powerful test is of the form 

0 0( ) : { | ( ) ( , ) },A x f x f x

where is determined from the condition 
0 0{ ( )} 1P X A for given 

(0< <1). For various prior distributions, we can get many confidence intervals. 
They are all admissible. 

2. ORDINARY CONFIDENCE INTERVALS

Suppose that X1,...,Xn are independent and identically distributed (i.i.d.) ran-
dom variables with the normal distribution N(µ, 0

2), where µ > 0 and 0 is 
known. Since the pivotal quantity 

0( , ) : ( )T X n X

is distributed according to N(0,1), it follows that the interval 

0 0
/2 /2( ) : max 0, ,  max 0,I X = X u X + u

n n

is the confidence interval (c.i.) for µ of confidence coefficient (c.c.) 1 , where 

u /2 is the upper 100( /2) percentile (see figure 1). Indeed, while ( )I X  can be-

come sometimes degenerate, it is always true that

{ ( )} 1 ,P I X

since the event “ ( )I X ” is equivalent to the event “ 0 /2| |n X u ”, 

which always has the probability 1 . But, for 1X , the c.i. )(XI  is degener-

ate, hence there is still room for improvement. 
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Figura 1 – 68.27% confidence limits for µ from the pivotal quantity. 

In order to improve the above, Feldman and Cousins (1998) consider the c.i. 
based on the acceptance region of the likelihood ratio (LR) test as follows. Sup-
pose that X1,...,Xn are i.i.d. random variables with the normal distribution  

N(µ,1), where µ>0. Since the likelihood function L of µ, given :X

1
(1 )

n

ii
n X

1
(1 ) :

n

ii
n x x ,

/2 2 2

1

1
( | ) (2 ) exp ( ) ( )

2

n
n

i
i

L x x x n x

for µ > 0, it follows that the maximum likelihood estimator (MLE) is given by  

ˆ : max{ ,0}.ML X

Then 

/2 2

1

/2 2

1
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1
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If we can obtain a(µ) and b(µ) such that  

( ( )) ( ( ))R a R b

and

1 ( ( ( ) )) ( ( ( ) )) ,n b n a

then the interval [a(µ), b(µ)] is an acceptance interval, where  is the cumulative 

distribution function (c.d.f.) of N(0,1). If ( ) : { | [ ( ), ( )]}S X X a b  is an in-

terval, then it is c.i. for µ of c.c. 1 (see figure 2). 

Figure 2 – 68.27% confidence limits for µ derived from the LR test. 

3. BAYESIAN CONFIDENCE INTERVALS

Suppose that X1,..., Xn are i.i.d. random variables with the normal distribution 
N(µ,1), where µ > 0. Let (µ) be an improper prior distribution, i.e. 

1 for  0,
( )

0 for  0.

Since X is normally distributed as N(µ, 1/n), the posterior density of µ given

X x is

2( | ) : exp ( ) ,
22 ( )

n n
f x x

n x

where  is the c.d.f. of N(0, 1). If there exist ( )x  and ( )x  such that 
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[ ( ), ( )] { | ( | ) } ,x x f x c

{ ( ) ( )} 1 ,P X X

then the interval 

[ max{ ,0},  ]X d X d

is the c.i. for µ of c.c. 1 , where 

1
0

1
0

1
(1 ( )) for  ,

1 1 1
(1 ) ( ) for  

2 2

n X X x
n

d

n X X x
n

with

1
0

1 1
:

1
x

n

(see Mandelkern (2002) and figure 3). 

Figure 3 – 68.27% confidence limits for µ based on the Bayesian approach. 

4. COMBINED BAYESIAN-FREQUENTIST CONFIDENCE INTERVALS FOR THE NORMAL 

MEAN IN CASE OF KNOWN VARIANCE

Under the same setup as section 3, we construct confidence intervals for µ by 
the combined Bayesian-frequentist approach. First we consider the problem of 
testing the hypothesis H: µ = µ0 (> 0) against K: µ ~ (µ), i.e. µ is distributed as the 
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same improper prior as section 3. Then the acceptance region of the most power-
ful (MP) test is of the form 

2

0

0
2 0

0

exp ( )
( )2

( , ) : ,
( ( ))

exp ( )
2

n
X d

n X
T X

n n n X
X

where, for given  (0< <1), is determined by

0

( ) .
y n y n n y

n nu du

Here, 0( , )T X  is the integrated LR or the Bayes factor (see, e.g. Robert (2001) 

and O’Hagan and Forster (1994)). Next, we shall show that there exist at most 

two solutions 0( )y and 0( )y  of the equation 

0( ( ))
,

( )

n y

n n y
 (1) 

if they does. Indeed, we consider the equation (t + c)/ (t) = . Putting 

( ) : ( ) ( ),G t t c t  (2) 

we have 

2( /2)( ) : ( ) ( ) ( )( ) .ct cG t t c t t t e t

Here, note that limt G(t) = 0, limt G(t) = 1 and  > 0. If c < 0, then there is 
the only one solution of the equation G'(t) = 0, hence that of (2) is unique. If  
c > 0, then there are at most two solutions of the equation G'(t) = 0, hence the 
solutions of (2) are also so. Therefore there are at most two solutions of (1), if 

they exist. Since y and y are solution of (1), if follows that  

00
( ( ))( ( ))

.
( ) ( )

n yn y

n y n y

Putting z n y , z n y and 0:m n , we have 

( )( )
.

( )( )

z mz m

zz
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Let Y be a random variable with the normal distribution N(0, 1/n). Then 

1 { } ( ) ( ).P z nY z z z

Since

1 { }   ,
z m z m

P z nY z P X
n n

we have the acceptance region 

1 1
( ) , ( ) ,z m z m

n n

hence we can construct a confidence interval (see figure 4). 

Figure 4 – 68.27% confidence limits for µ based on the combined Bayesian-frequentist approach.

Next, as a proper prior distribution, we consider an exponential distribution 

1
for 0,

( )

0 for 0,

µe  µ

 µ

where > 0. Here, note that the proper prior (µ) converges to the improper 
uniform prior of type (µ) as in the sense that (µ) 1 as . In a simi-
lar way to the above, it is shown that the acceptance region of the MP test is of 
the form 



 M. Akahira, A. Shimizu, K. Takeuchi 358

2

0

0
2

0

2 2

0

1
exp ( )

2 2
( , ) :

exp ( )
2 2

1 1 2 1
exp

2
.

( ( ))

µn n
X e d

T X
n n

X

n X
n X

n nn

n n X

Here, for given (0< <1), is determined by

0

2
0( , )

exp ( ) .
2 2x T x

n n
x d x

Now, there are at most two solutions t1(µ0) and t2(µ0) (t1(µ0) < t2(µ0)) of the equa-

tion µxT ),( 0  if they exist. Then we have 

0 00 1 0 2 01 { ( , ) } { ( ) ( )},P T X P t X t

and if the above equality is reduced to 

0 0{ ( ) ( )} 1 ,P a X b X

the interval [ ( ), ( )]a X b X  is c.i. for µ of c.c. 1 (see figure 5). 

Figure 5 – Bayesian-frequentist 68.27% confidence limits for µ when the prior distribution is expo-
nential one Exp( ).

Next we numerically compare ordinary, LR, Bayesian, combined Bayesian-
frequentist confidence limits (see figure 6 and table 1). As is seen in figure 6 and 

table 1, if the value of X is less than 1, the LR c.i. is comparatively better than 
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others, and in a neighborhood of 0X  the combined Bayesian-frequentist c.i. is 
better than others in the sense that the length of c.i. is shorter. However, the 
combined one seems to be good in the sense that its width is monotone increas-

ing with some appropriate extent for 0X .
In purely non-Bayesian sense, our formulation can be interpreted as follows. 

We have the problem of testing H: µ = µ0 against K: µ µ0 when µ > 0. Now de-
note by (µ) the power of a test  under µ. We want to maximize (µ). Since 
there exists no uniformly most powerful test, we can not maximize (µ) simulta-
neously for all µ > 0. We may instead maximize the average power of (µ) over  
µ > 0 with some weight function (µ), that is, 

0
( ) ( ) ( ),d

where is a probability measure over the interval (0, ). It is easily shown that 

maximizing ( )  is given by the most powerful test of the hypothesis against 

the simple alternative hypothesis : µ~ (µ). 

Figure 6 – 68.27% confidence limits for µ.

TABLE 1 

Ordinary, Bayesian, and LR 68.27% confidence intervals of µ for n=1 

x Ordinary LR Bayes 

-4 [0, 0] [0, 0.028] [0, 0.264] 
-3 [0, 0] [0, 0.038] [0, 0.334] 
-2 [0, 0] [0, 0.069] [0, 0.446] 
-1 [0, 0] [0, 0.272] [0, 0.642] 
0 [0, 1.000] [0, 1.000] [0, 1.000] 
1 [0, 2.000] [0.241, 2.000] [0.203, 1.797] 
2 [1.000, 3.000] [1.000, 3.000] [1.032, 2.968] 
3 [2.000, 4.000] [2.000, 4.000] [2.001, 3.998] 
4 [3.000, 5.000] [3.000, 5.000] [3.000, 5.000] 
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Bayesian-frequentist 68.27% confidence intervals of µ for n=1 

x Uniform Exp(1) Exp(2) Exp(3) 

-4 [0, 0.540] [0, 0.361] [0, 0.435] [0, 0.466] 
-3 [0, 0.626] [0, 0.406] [0, 0.495] [0, 0.534] 
-2 [0, 0.752] [0, 0.467] [0, 0.581] [0, 0.630] 
-1 [0, 0.961] [0, 0.574] [0, 0.728] [0, 0.794] 
0 [0, 1.372] [0, 0.841] [0, 1.054] [0, 1.146] 
1 [0.525, 2.089] [0.488, 1.540] [0.523, 1.727] [0.524, 1.826] 
2 [1.299, 3.012] [0.830, 2.500] [1.053, 2.642] [1.135, 2.724] 
3 [2.082, 4.000] [1.248, 3.494] [1.651, 3.628] [1.798, 3.724] 
4 [3.011, 5.000] [1.832, 4.493] [2.443, 4.627] [2.648, 4.723] 

5. COMBINED BAYESIAN-FREQUENTIST APPROACH IN CASE OF UNKNOWN VARIANCE

In the previous sections, we assume that the variance is known. In this section 
we construct a Bayesian-frequentist type confidence intervals of µ when the vari-
ance 2 is unknown. Suppose that X1,...,Xn are i.i.d. random variables according to 
the normal distribution N(µ, 2) with a p.d.f. f(x ; µ, 2), where n  2. Now we 
consider the problem of testing H : µ = µ0(> 0),  ~ ( ) = 1/ for  > 0 against  
K : (µ, ) ~ (µ, ) = 1/ for µ > 0, > 0. Then we have 
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where 

( 2 ) 1
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2 ( 2)
: , : ( 1) ,
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( 1) ( 1) 2 1
: , : ( ) .

( 2) 1

n
n

n

n

i
i

n
C C C n

n n
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Note that fn 1 is a p.d.f. of the t-distribution with degrees n 1 of freedom. From 
(3) we have under the hypothesis H
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where Fn 1 is the c.d.f. of fn 1.

In the above testing problem, the acceptance region of the MP test is of the 
form

0 1 0
0 0

1 0 0

( ) ( )
( , , ) : .

( ( ) )

n

n

S n F n X S
T X S

f n X S
 (4) 

By the approximation of the c.d.f. Fn 1 to the normal distribution, we have 

2
1 2

1 2

1 1
( ) ( ) ( 1) ( )

4( 1)

1
: ( )           (say),   

n

n

F t t t t t O
n n

t O
n

 (5) 
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where  and  are the c.d.f. and p.d.f. of the standard normal distribution N(0,1), 
respectively. Then 

2 2
1 1 2

1 2

1 1
( ) ( ) ( ) ( 1) ( )

4( 1)

1
: ( )             (say).

n n

n

f t F t t t t t O
n n

t O
n

 (6) 

So, instead of T in (4) we use 

0 1 0
0 0

1 0 0

( ) ( )
( , , ) :

( ( ) )

n

n

S n n X S
T X S

n X S

as the approximation of T by (5) and (6). Putting 0( )t n x s , we have at 

most two solutions t  and t  of t of the equation 

0
0 1

0

1

( ) 

,
( )

n

n

n
s n t

s

t
 (7) 

if they exist. But t  and t  can not be represented as functions of µ0/s0 since s and 

t are not independent. So, instead of s0 in (7) we use as a known standard devia-

tion for the present, and the solutions 0t  and 0t  become functions of µ0/ such

that 

0 0 0
00

( )
1 .

n X
P t t

Since

0 0
00 00 1 ,P t X t

n n

it follows that the acceptance region is 

0 0
00 00 ,   .t t

n n
 (8) 

Since is generally unknown, we propose the acceptance region 
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0 0 0 0
00 00

0 0

,    ,
S S

t t
S Sn n

 (9) 

where S0 is substituted for in (8). From (9) we numerically construct a c.i. for µ
(see figure 7 and table 2). 

Figure 7 – Bayesian-frequentist 95% confidence limits for µ in the case of unknown variance .

TABLE 2 

The coverage probability (%) of the Bayesian-frequentist type 95% 
confidence interval for µ in the case when  is unknown 

(i) n = 5 

µ
0.1 0.3 0.5 1.0 1.3 

0.5 94.94 94.97 95.00 94.89 95.10 
1.0 94.94 95.27 94.88 95.13 95.07 
1.5 94.97 95.10 95.01 95.07 95.01 
2.0 95.14 94.91 95.06 94.84 95.03 

(ii) n = 10 

µ
0.1 0.3 0.5 1.0 1.3 

0.5 95.05 95.18 95.04 95.10 95.06 
1.0 94.90 95.10 95.17 95.01 94.93 
1.5 94.92 95.02 94.88 94.96 95.00 
2.0 95.07 95.10 95.09 94.77 94.90 

As is seen in table 2, the value of coverage probability is very close to that of 
confidence coefficient. 

6. CONCLUDING REMARKS

In this paper, we propose the combined Bayesian-frequentist c.i. for µ in both 
of cases when is known and unknown. We give a numerical comparison of the 
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combined one with ordinary, LR and Bayesian c.i.’s. As a result, the combined 
one is comparatively better than others in the sense that its width is monotone 

increasing with some appropriate extent for 0X . Note that using the inte-
grated LR is closely connected with the Bayes factor of H against K (see, e.g. 
Robert (2001) and O’Hagan and Forster (1994)). In the case when is unknown 
as is seen in table 2, the Bayesian-frequentist type c.i. can be recommended. For 
unknown case, one may choose as the prior dµd / 2 instead of dµd / . Now, in 
the formula (3) we have n + 1 instead of n, and the results will not make much 
difference. However, it seems to be more natural to the degree n 1 of freedom 
instead of n. Hence our choice is dµd / . On the choice of the prior, see, e.g. Ber-
ger and Pericchi (2001).
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RIASSUNTO

La costruzine di intervalli di confidenza combinati bayesiani-frequentisti per un parametro positivo  

Negli esperimenti della fisica moderna, si verificano numerosi casi in cui il parametro 
può assumere solo valori non negativi o positivi. Per tali casi nel contributo si adotta un 
approccio combinato bayesiano-frequentista per costruire gli intervalli di confidenza. In 
seguito gli intervalli vengono confrontati con quelli ottenuti dai due approcci bayesiano e 
classico per i casi normali. 

SUMMARY

The construction of combined Bayesian-frequentist confidence intervals for a positive parameter 

In current physics experiments, there are many cases when the value of a parameter is 
theoretically assumed to be nonnegative or positive. In such cases, a combined Bayesian-
frequentist approach to confidence intervals for a positive parameter is adopted in this 
paper, and the confidence intervals are constructed. Comparisons of the confidence in-
tervals with ordinary and Bayesian ones are done in the normal cases. 


