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THE RANGE OF DERIVATIVE’S ARBITRAGE PRICES 
IN A GENERAL INCOMPLETE MARKET 

Silvia Romagnoli 

1. INTRODUCTION

In valuing financial derivatives, is crucial the completeness of the market that 
assure the uniqueness of the price and the replication, only by the hypothesis of 
the absence of arbitrage opportunities. In this contest, it is possible also represent 
this arbitrage price, in term of the expected value of the derivative's final payoff 
under the unique martingale measure relative to the choosen numeraire by the 
martingale representations and by the Girsanov Theorem. 

This arguments failed if we consider an incomplete market where, by the ab-
sence of arbitrage opportunities hypothesis, we can't define an unique derivative's 
price and where the perfect hedging is not possible. En effect, we have several 
equivalent martingale measures relative to such a numeraire and this set is strictly 
linked by the replication problem. 

In this contest we have different approach like the one by utility function hy-
pothesis proposed by (Davis, 1994), the one of risk-minimizing strathegy by 
(Föllmer and Schweizer, 1991) and the super-replication approach proposed by 
(El Karoui and Quenez, 1995). In a general incomplete market driven by a mixed 
diffusion of finite dimension, we follow the super-replication approach to charac-
terize the range of derivative's arbitrage prices in term of solution of the related 
dynamic control problem and of the dependence of the price's bounds by the 
relevant parameters. 

In the section 2, we propose a model in the hypothesis of deterministic interest 
rate and present some applications in different incomplete situations, like one in a 
standard stochastic volatility model (by the other we remember the model of Hull 
and White, 1987, the one of Stein and Stein, 1991 and the one of Heston, 1993). 
The other application of DIRH model is to Gas market, where we consider a 
model like the one proposed by Marzo and Romagnoli (2005) but in an incom-
plete contest; we observe that here we may apply the DIRH model also if the in-
terest rate is stochastic, because we consider an exponential affine structure of 
contingent claim's final payoff and so we may insert this variable like a compo-
nent of the director process of the market. 
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By the other hand, if we don't have this particular function of final payoff we 
have to consider separatly the stochasticity of interest rate and we have to apply 
the model in the hypothesis of stochastic interest rate (SIRH) presented in sec-
tion 5. We can see that, in this case, we define a different set of equivalent mar-
tingale measure but after we can characterize the range of contingent claim's arbi-
trage prices in the same way of in DIRH model.  

2. THE DIRH MODEL

We consider a financial market where the incertainty is represented by a sto-

chastic variable ( ) n
tX , that is the price of risky assets, which dynamic is the 

following jump diffusion: 

d = ( , )d ( , )d dt t t t tX t X t t X W Z

where, ( , ) n
tt X , ( , ) n n

tt X , ( )tW  is a -Brownian motion in n  de-

fined on a probability space ( , , ) 1 and ( )tZ  is a pure -jump process re-

lated to -martingale ( )tM  with stochastic intensity ( , )t X , whose jump size 

distribution is , a probability distribution on n . We define the jump transform 
vector ( )c  that determines the probability distribution of each jump measure ,

so that for any nc , we have: 

( ) = exp( )d ( )nc c z z

where nc  and nz .

3. THE SET OF EQUIVALENT MARTINGALE MEASURE AND THE RANGE OF ARBITRAGE

PRICES IN THE DIRH

If we suppose that the market is incomplete, to determine the range of prices 
of a contingent claim on X , we have to consider the set of equivalent martingale 

measures  for X , so that: 

exp d | =
T

u T t tt
r u X X

where the interest rate tr  is a deterministic function of the time2. In the following 

1 This probability is the conventional so called hystorical or objective probability measure.
2 In the section 5 we consider the case of SIRH. 
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we suppose, for computational semplicity and without loosing in generality, that 
the interest rate is null (NIRH). 

We have the following;  

Proposition 1. In a general incomplete market in the NIRH, the set of equiva-

lent martingale measures  for X  is defined by the following Radon-Nycodim 
derivatives:

d
=

d
t

t

L  (1) 

where:  

0 0 0 0

1
= exp d | |d [ ln(1 )] d ( ) ( , )d

2

t t t t

t u u u u u u uL W u M u X u  (2) 

assumed to be a -square integrable strictly positive martingales and where the 
process ( )t  is so that (1 )> 0t .

In particular ( , )t  are two predictable process in n  linked by the following 

relation3:

( , ) ( , ) ( ) ( , )1= 0t t t t tt X t X t X  (3) 

where 1  is the n -vector of units and 0  is the n-vector of zero components. 

Proof. The dynamic of ( )tX  under the probability , defined by the Radon-

Nycodim derivative (2) is the following:  

d = ( ( , ) ( , ) )d ( , )d d ( ) ( , )dt t t t t t t t tX t X t X t t X W Z t X t

that is a -martingale under condition (3) and where, by Girsanov theorem, we 

define the -Brownian motion ( )tW  and the -pure jump process 

( )tZ , as follows: 

0

0

= d

= ( ) ( , )d

t

t t u

t

t t u u

W W u

M Z u X u

 where ( )tM  is a -martingale. 

3 If the interest rate is a deterministic function of the time but not null, equation (3) is equal to 

1
t

r  where 1  is a n-vector with unit components.
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Proposition 2. In a general incomplete market in the NIRH, the arbitrage prices 

bounds of a contingent claim which final payoff is a function 1,2( , )f t x , is 

[ , [d uf f , where uf  is the vischiosity solution of the following: 

1
( , ) ( ( , ) ( , ) ( , )) 0

2
u u

t xxf t x tr t x f t x t x  (4) 

subject to the final condition ( , ) ( )uf T x f x , where ( , )u n
t f t x ,

( , )u n n
xx f t x  and where df  is the vischiosity solution of the following: 

1
( , ) ( ( , ) ( , ) ( , )) 0

2
d d

t xxf t x tr t x f t x t x

subject to the final condition ( , ) ( )df T x f x .

Proof. We define the upper bound uf  of contingent claim's price interval, as 

follows:

sup= [ ( )]

= [ ( )]inf

u
T

T

f f X

f X

where  is the set of -adapted and limited process with values on n , and 
consider the related dynamic problem: 

sup( , )= [ ( )| = ]u
T tf t x f X X x

so that 0= (0, )u uf f x . If we consider the Bellman's equation for this stochastic 

control, we can characterize ( , )uf t x  like as the vischiosity super-solution of the 

following:  

( , ) [ ( , ) ( , ) ( ) ( , )1] ( , )inf

1
( ( , ) ( , ) ( , )) 0

2

u u
t t t x

u
xx

f t x t x t x t x f t x

tr t x f t x t x

 (5) 

with the final condition ( , ) ( )uf T x f x . We observe that, if the condition (3) 

is satisfied, so (5) begun the (4) in the thesis of proposition. 

For the bound df  we proceed in the same way.
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Proposition 3. If we suppose that the volatility ( , )t x  is not bounded, so the 

upper bound uf  is not increasing on t  and is concave on X  and by the same 

argument df  is not decreasing on t  and is convex on X .

Proof. If we suppose that ( , )t x  is a matrix with null components in the prin-

cipal diagonal, so equation (4) prove the not increasing property of ( , )uf t x  re-

spect to t .
By the other hand, if we suppose the limit case in which the principal diago-

nal's components of the matrix ( , )t x , so to respect (4) we must have 

( , ) 0u
xx f t x .

By the same arguments we find the characterization of ( , )df t x .

In the following Proposition we make the explicit characterization of the 
bounds of derivative's prices;   

Proposition 4. If ( )cvf x  is the t -price of the concave envelopment of function 

( )f x , i.e. the minimal concave function that is not minor of f , in NIRH model 

we have that: 

( , )= ( )u cvf t x f x

and in particular 0= ( )u cvf f x .

In the same way, if ( )cxf x  is the t -price of the convex envelopment of 

( )f x , i.e. the maximal convex function that is minor of f , we have that:  

( , )= ( )d cxf t x f x

and in particular 0= ( )d cxf f x .

Proof. By the final condition on ( , )uf t x  and his not increasing property on t ,

we have that:  

( , ) ( ) ( , ) [0, [u nf t x f x t x T

and, by the concave on x  characterization of ( , )uf t x , we have that: 

( , ) ( ) ( , ) [0, [u cv nf t x f x t x T

So, if we remember the definition of the super-replication price like as the mi-
nor initial investment to super-hedge the contingent claim, follows that:  
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( , ) ( ) ( , ) [0, [u cv nf t x f x t x T

and finally we have the thesis of proposition. To prove the explicit characteriza-

tion of df , we proceed in the same way. 

For particular function of payoff ( )f x  it may be possible to define explicitly 

the bounds of derivative's prices. For example in (Bellamy and JeanBlanc, 1997) is 

shown that the range of the European call option's prices [ , [d u
c cf f , is:

( , )=u
cf t x x

and in particular 0=u
cf x , and as:

( , )= ( , )d
cf t x BSC t x

where ( , )BSC t x  is the Black-Scholes price of the call option written on X :

d = ( , )d =t tX t X W X x

while the range of the European put option's prices, [ , [d u
p pf f , is explicitly de-

fined as follow: 

( , )=u
pf t x K

where K  is the option's strike price, and that:  

( , )= ( , )d
pf t x BSP t x

where ( , )BSP t x  is the t -Black-Scholes price of the put option. 

4. SOME EXAMPLES IN THE DIRH

4.1. The future price of gas in an affine model 

In this example we consider a particular incomplete market driven by an affine 
jump diffusion where, we may follows the transform method proposed by Duffie 
et al. (1999) to determine explicitly the derivative's price. This constraint of the 
model structure, applied to the market of gas derivatives, make the problem more 
tractable, mathematically specking (see for the same application, but in the con-
test of complete market, the paper by (Marzo and Romagnoli, 2005). 

In this contest, we consider the future price of gas, as a function of the actual 

spot price of gas G , the price of petrol PP  which is modellized by a diffusion 
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with jump, the convenience yield , the stochastic volatility v  and the the sto-
chastic interest rate r 4:

= ( , , , , )PFG f G P v r

The price of petrol follows a diffusion with jump5:

1,= ( )P P
t t t t tdP P r dt e vdW dZ

where 1( )tW  is a Brownian motion defined on a probability space ( , , )  and 

( )tZ  is a pure -jump process with stochastic intensity ( , )Pt P , whose jump 

size distribution is , a probability distribution on . We suppose that ( , )Pt P

is affine on PP , so that:

0 1( , )=P P
tt P l l P

and we define the jump transform ( )c  that determines the probability distribu-

tion of each jump measure , so that for any c , we have:  

( )= exp( )d ( )c cz z

The convenience yield ( )t  follows the diffusion:  

2,=( )t t td dt e vdW

and the volatility is stochastic and follows the diffusion: 

3,=( )t t v tdv kv dt vdW

where 2( )tW  and 3( )tW  are independent Brownian motions defined on a prob-

ability space ( , , ) .

The instantaneous interest rate ( )tr  follows an Ornstein-Uhlenbeck mean-

reverting process:  

4,= ( )t t r tdr a b r dt dW

4 Here we consider the problem as a case of DIRH model because we have a particular function 
of final payoff of contingent claim, like an affine exponential function of vector X and we may re-
verse the incertainty of r in the vector X, that is in the exponential of the final payoff of contingent 
claim.

5 Here we suppose to work under the risk-neutral probability measure for PP .
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where the parameters ,a b  and r  are constants, and where 4( )tW  is a Brownian 

motion defined on a probability space ( , , ) .

We note that all the processes are constructed on the probability space 

( , , )  filtered by ( )t  which is generated by the processes , =1,...,4( , )i i tW Z . It 

is well known that the Brownian motion 1( )tW  is independent by ( )tZ , and 

we suppose that also the others Brownian motions of this model are independent 

by ( )tZ . We suppose also that the Brownian motions , =1,...,4( )i i tW  are incorre-

lated.
If we introduce a matrix notation, the vector tX , defined as: 

=

P

t
t

t

t

P

X
v

r

follows the diffusion:  

d = ( , )d ( , )d dt t t t tX t X t t X W I Z

where =[1 0 0 0]I  and ( )tW  is a standard Brownian vector in 4  like 

that:  

1,

2,

3,

4,

=

t

t

t

t

t

W

W
W

W

W

and we may write ( , )tt X  and ( , )tt X  like as two affine functions of tX :

0 1

0 1

( , ) =

( , ) ( , ) =

t t

t t t

t X K K X

t X t X H H X

where: 
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4
0 0

4 4
1 1

0

= ;

0 0 0

0 0 0
( ) = ; ( )

0 0 0

0 0 0

t

K K

ab

K t K t
k

a

4 4
0 0

2

(1)
1

(2)
1 4 4 4

1 1(3)
1

(3)
1

0 0 0 0

0 0 0 0
= ;

0 0 0 0

0 0 0

0 0 0

0 0 0
= ;

0 0 0

0 0 0

r

H H

H

H
H H

H

H

where 0  is the null vector in 4  and where: 

(1) (1) 4
1 1

2

(2) (2) 4
1 1

2 2

(3) (3) 4
1 1

2

(4) 4
1

0

0
= ;

0

0

0
= ;

0

0

0
= ;

0

= 0

v

H H

e

H H

e

H H

H
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We may write also tr  like as an affine function of tX :

0 1( , )=t tr X t X

where: 

0 = 0

1

0

0
=

0

1

In the matrix-notation we have:  

0 1

0 1

( , ) =

0
=

0

0

t t

P
t

t X L L X

l l P

where: 

0

4
0 0

1

4 4
1 1

0
= ;

0

0

0 0 0

0 0 0 0
= ;

0 0 0 0

0 0 0 0

l

L L

l

L L

and also:

4( ) = exp( )d ( )

= ( ); ( )P

c c z z

c c

In this contest we have to change probability, considering that only the first 
component of X  is the price of risky asset. 
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Corollary 5. In an incomplete market driven by an affine jump diffusion, like 

explicitly before, the set of equivalent martingale measures  for the risky as-
set's price, that is the first component of the vector X , is defined by the follow-
ing Radon-Nycodim derivatives:  

d
=

d
t

t

L  (6) 

where tL  has the same expression presented in (2). 

In particular ,( )t  are two predictable process in 4  linked by the following 

relation: 

( , ) ( , ) ( ) ( , )1=t t t t t tt X t X t X Y  (7) 

where 1  is the 4 -dimensional unit vector and tY  is a 4 -dimensional vector 

where the first component is null. 

Proof. We proceed like in proof of proposition 1, but here we consider a mar-
tingale measure only respect the first component of vector X , unlike in the pre-
vious section where all the vector X  represent the risky asset's prices.

So we have the following corollary, like as an application of the proposition 2; 

Corollary 6. If we suppose that the future price of gas is the actual price of gas 
G , times the expectation of an exponential affine function on TX ,

1,2( , )g t x , in an incomplete market driven by an affine jump diffusion, the 

range of his arbitrage future prices is the gas price G , times [ , [d uFG FG , where 
uFG  is the vischiosity solution of the following: 

(1,1) 21
( , ) ( ( , )) ( , ) 0

2
u u

P Pt P P
FG t x t x FG t x  (8) 

subject to the final condition ( , ) ( )uFG T x g x , and where ( , )dFG t x  is the 

vischiosity solution of the following: 

(1,1) 21
( , ) ( ( , )) ( , ) 0

2
d d

P Pt P P
FG t x t x FG t x

subject to the final condition ( , ) ( )dFG T x g x , with ( ) = exp( )g x u x  for a 

given 4u  and where ( , )d
P PP P

FG t x  is the first component in the diagonal 



S. Romagnoli 326

of matrix ( , )d
xx FG t x  and (1,1)  is the component in place (1,1)  of the matrix 

( , )t x 6.

Proof. We proceed like as in proof of proposition 2, but when we consider the 

Bellman's equation (5), and suppose that the condition (7) is satisfied, ( , )uFG t x

is the vischiosity super-solution of the following:  

1
( , ) ( , ) ( ( , ) ( , ) ( , )) 0inf

2
u u u

t t x xxFG t x Y FG t x tr t x FG t x t x  (9) 

with the final condition ( , ) ( )uFG T x g x , where  is the set of -adapted

and limited process with values on 4 .
If we suppose that ,  in equation (9), we have to impose that 

( , )u
x FG t x  is a vector where the components, except the first, are null and 

from this follows that also the second derivatives respect these variables, in the 

principal diagonal of matrix ( , )u
xx FG t x , are null. So the only variable that is 

not null is the first component in the principal diagonal of matrix ( , )u
xx FG t x ,

that is the second derivative respect to the first component of vector X , like in 
the thesis of proposition. 

For the bound ( , )dFG t x , we proceed in the same way. 

We observe that the bounds dFG  and uFG  are function only of time t  and 

of the price of petrol PP , so in the following we may write , ( , )d u PFG t P . Also 

we may characterize these extremes of the interval of prices, like in the following;  

Corollary 7. If we suppose that the volatility of the price of petrol PP , (1,1) , is 

not bounded, so the upper bound uFG  not increase on t  and is a concave func-

tion on the first component PP  of X  and by the same argument dFG  is not 

decreasing on t  and is a convex function on PP .

Proof. If we suppose that (1,1)  is null, so equation (8) prove the not increasing 

property of ( , )u PFG t P  respect to t .

6 Here we have only the first component of the diagonal of ( , )t x , because the change of 

probability from  to , make null only the drift of the first component of the vector X , that 

is the drift of the risky asset's price. 
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By the other hand, if we suppose that (1,1) , so to respect (8) we must 

have ( , ) 0u P
P PP

FG t P
P

.

By the same arguments we find the characterization of ( , )d PFG t P .

In this example of DIRH model, we consider an exponential function ( )g x

for the final payoff of contingent claim and so, applying the proposition 4, we 
have the following characterization of the Future Gas prices bounds;  

Corollary 8. In this exponential affine model, we have that ( , )d PFG T P  is the 

convex envelopment of ( )Pg P , while the upper bound of prices is not defined. 

Proof. This is an application of proposition 4 to the case of an affine exponen-
tial function of contingent claim's final payoff.

4.2. Stochastic volatility model 

Here we consider a particular application of our model to the case of incom-
plete market where the incertainty is characterize by a 2-dimensional Brownian 
motion, one which drive the price of risky asset and one which drive his volatility. 
In this standard case, we doesn't have a mixed diffusion so is not necessary to 
impose a particular restriction on the structure of parameters and final payoff of 
contingent claim.  

We suppose that under the probability measure , the dynamics are the fol-
lowing:

d = ( )d dt t tX X t W

where 2( )tX , 2 2( )tX  and ( )tW  is a 2 -dimensional -Brownian 

motion in 2 .
Explicitly the vector X  has the following expression: 

1,

2,

d( ) 0
d = d

d0
tt t t

tt

WS S Y
t

WY

Like as in the previous example, we have to change probability from measure 

 to , that is a martingale measure respect to the first component of X , the 
risky asset price; 

Corollary 9. In a standard stochastic volatility model in NIRH, like explicitly be-

fore, the set of equivalent martingale measures  for the risky asset's price, that 
is the first component of the vector X , is defined by the following Radon-
Nycodim derivatives: 
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d
=

d
t

t

L  (10) 

where tL  has the following expression: 

0 0

1
= exp d | |d

2

t t

t u u u uL W u

assumed to be a square integrable strictly positive martingale. 

In particular ( )t  is a predictable process in 2  satisfying the following relation: 

( ) =t t tX Y  (11) 

where tY  is a 2 -dimensional vector where the first component is null. 

Proof. We proceed like in proof of proposition 1, but here we consider a mar-
tingale measure only respect to the first component of vector X  and we don't 
have a jump process, unlike in the section 2 where all the vector X , that is a 
mixed diffusion, represent the risky asset's prices.

Like as an application of the proposition 2 we have the following;  

Corollary 10. In a standard stochastic volatility model in NIRH, the range of the 
arbitrage prices of a contingent claim which final payoff is a function 

1,2( , )f t x , is [ , [d uf f , where uf  is the vischiosity solution of the following:

21
( , ) ( , ) 0

2
u u

t SSf t x f t x  (12) 

subject to the final condition ( , ) ( )uf T x f x , and where df  is the vischiosity 

solution of the following:  

21
( , ) ( , ) 0

2
d u

t SSf t x f t x

subject to the final condition ( , ) ( )df T x f x  and where ( , )u
SS f t x  is the 

first component in the diagonal of matrix ( , )u
xx f t x  and  is the component 

in place (1,1)  of the matrix .

Proof. We proceed like as in proof of proposition 2, but when we consider the 

Bellman's equation (5), and suppose that the condition (11) is satisfied, ( , )uf t x

is the vischiosity super-solution of the following:  
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1
( , ) ( , ) ( ( , ) ) 0inf

2
u u u

t t x xxf t x Y f t x tr f t x  (13) 

with the final condition ( , ) ( )uf T x f x , where  is the set of -adapted and 

limited process with values on 2 .
If we suppose that  in equation (13), we have to impose that 

( , )u
x f t x  is a vector where the second component are null and from this follows 

that also the second derivatives respect this variable, in the principal diagonal of 

matrix ( , )u
xx f t x , is null. So the only variable that is not null is the first compo-

nent in the principal diagonal of matrix ( , )u
xx f t x , that is the second derivative 

respect to S , the first component of vector X , like in the thesis of proposition. 

For the bound ( , )df t x , we procede in the same way.

We observe that the range of derivative's prices depend only on t  and on the 

price S , so in the following we may write , ( , )d uf t S . Also we may characterize 

these extremes of the interval of contingent claims prices, like in the following; 

Corollary 11. If we suppose that the volatility of the price of risky asset S , , is 

not bounded, in NIRH model, so the upper bound uf  not increase on t  and is a 

concave function on the first component S  of X  and by the same argument 
df  is not decreasing on t  and is a convex function on S .

Proof. If we suppose that  is null, so equation (12) prove the not increasing 

property of ( , )uf t S  respect to t .

By the other hand, if we suppose that , so to respect (12) we must 

have ( , ) 0u
SS f t S .

By the same arguments we find the characterization of ( , )df t S .

An explicitly characterization of the derivative's prices bounds, is possible only for 
particular derivative's final payoff functions, like as it is pointed in proposition 4. 

5. THE MODEL IN THE SIRH

We consider a financial market where the incertainty is represented by a sto-

chastic variable ( ) n
tX , that is the price of risky assets, which dynamic is the 

following jump diffusion7:

7 Here we consider the proportional drift and diffusion on tX  to semplify the calculation.
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d
= d ( , ) d 1 dt

t t t t

t

X
r t t X W Z

X

where, tr  is the spot interest rate, 1 n , ( , ) n
tt X , and the parameters are 

defined like in section 2 and section 3. 
We suppose that the interest rate is stochastic and in particular we suppose 

that the dynamic of the zero coupon price ( (., ))tB T , is the following:

d ( , )
= d ( , ) d

( , )
t t

B t T
r t t T W

B t T
 (14) 

or equivalently, on the measure :

d ( , )
= ( ( , ) )d ( , ) d

( , )
t t t

B t T
r t T t t T W

B t T
 (15) 

where, ( , )B t T  and ( , ) nt T .

6. THE SET OF EQUIVALENT MARTINGALE MEASURE AND THE INTERVAL OF ARBITRAGE

PRICES IN THE SIRH

If we suppose that the market is incomplete and we make the SIRH, to deter-
mine the range of prices of a contingent claim of X , we have to consider the set 

of equivalent martingale measures  for X , so that:

| =
( , )

t
T t

X
X

B t T

where the zcb price follows the SDE (14) or (15). 
We have the following; 

Proposition 12. In a general incomplete market with SIRH, the set of equivalent 

martingale measures  for X  is defined by the following Radon-Nycodim de-
rivatives:

d
=

d
t

t

L  (16) 

where: 
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0 0 0

0

1
= exp d | |d [ln(1 )] d

2

( ) ( , )d

t t t

t u u u u u u

t

u u

L W u M

u X u

 (17) 

assumed to be a -square integrable strictly positive martingale and where the 

process ( )t  is so that (1 )> 0t .

In particular ( , )t  are two predictable process in n  linked by the following 

relation: 

| ( , ) ( , )| ( , ) ( , ) ( , )
( , )

| ( , ) ( , )| ( ) ( , ) = 0

t
t t

t t t t

X
t T t T t T t X t T

B t T

t X t T t X

 (18) 

where 0  is the n -dimensional vector of zeros. 

Proof. The dynamic of 
(., )

t

X

B T
 under the probability , defined by the 

Radon-Nycodim derivative (17) is the following8

d
( , )

= (| ( , ) ( , )| ( , ) ( , ) ( , ))d

( , )

| ( , ) ( , )| d 1 d

(| ( , ) ( , )| ( , ) ( , ) ( , ) | ( , ) ( , )|

( ) ( , ))d | ( , ) ( , )| d

t

t t
t

t t t

t t t t

t t t t

X

B t T
t T t T t T t X t T t

X

B t T

t X t T W Z

t T t T t T t X t T t X t T

t X t t X t T W 1 d tZ

that is a -martingale under condition (18) and where, by Girsanov theorem, 

we define the -Brownian motion ( )tW  and the -pure jump process 

( )tZ , as follows: 

8 By applying the It ô  lemma, we find the dynamic of 
1

(., )
t

B T
:

=

1
d

( , )
[( ( , ) )d ( , ) d | ( , ) ( , )|d ]

1

( , )

t t t

B t T
r t T t t T W t T t T t

B t T
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0

0

= d

= ( ) ( , )d

t

t t u

t

t t u u

W W u

M Z u X u

where ( )tM  is a -martingale. 

Proposition 13. In a general incomplete market with SIRH, the arbitrage prices 

range of a contingent claim which final payoff is a function 1,2( , )F t x , is 

[ , [d uF F , where uF  is the vischiosity solution of the following: 

1
( , ) ( , ) ( , ) ( , )

2 ( , )

( , ) ( , ) 0
( , )

u u
t xx

x
F t x tr t x t T F t x

B t T

x
t x t T

B t T

 (19) 

subject to the final condition ( , ) ( )uF T x F x , where ( , )u n
t F t x ,

( , )u n n
xx F t x  and where dF  is the vischiosity solution of the following: 

1
( , ) ( , ) ( , ) ( , )

2 ( , )

( , ) ( , ) 0
( , )

d u
t xx

x
F t x tr t x t T F t x

B t T

x
t x t T

B t T

 (20) 

subject to the final condition ( , ) ( )d
TF T x F X .

Proof. We define the upper bound uF  of contingent claim's prices range, as 
follows:

sup= [ ( )]

= [ ( )]inf

u
T

T

F F X

F X

where  is the set of -adapted and limited process with values on n , and 
consider the related dynamic problem: 
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sup( , )= [ ( )| = ]u
T tF t x F X X x

so that 0= (0, )u uF F x . If we consider the Bellman's equation for this stochastic 

control, we can characterize ( , )uF t x  like as the vischiosity super-solution of the 

following: 

( , ) | ( , ) ( , ) | ( , )inf
( , )

( , ) ( , ) | ( , ) ( , )| ( ) ( , ) ( , )

1
( , ) ( , ) ( , ) ( , ) ( , )

2 ( , ) ( , )

u t
t t

u
t t t t t x

u
xx

X
F t x t T t T t T

B t T

t X t T t X t T t X F t x

x x
tr t x t T F t x t x t T

B t T B t T
0

(21)

with the final condition ( , ) ( )uF T x F x . We observe that, if the condition (18) 

is satisfied, so (21) begun the (19) in the thesis of proposition. 

For the bound dF  we proceed in the same way.

Proposition 14. If we suppose that | ( , ) ( , )|t x t T  is a not bounded vector, 

so the upper bound uF  is not increasing on t  and is concave on X  and by the 

same argument dF  is not decreasing on t  and is convex on X .

Proof. If we suppose that | ( , ) ( , )|t x t T  is a vector with null components, 

so equation (19) prove the not increasing property of ( , )uF t x  respect to t .

By the other hand, if we suppose the limit case in which all the components  
of the vector | ( , ) ( , )|t x t T , so to respect (19) we must have 

( , ) 0u
xx F t x . By the same arguments we find the characterization of 

( , )dF t x .

Like as in DIRH model, we have the following explicitly characterization of 
the bounds of derivative's prices in SIRH model; 

Proposition 15. If ( )cvF x  is the t -price of the concave envelopment of func-

tion ( )F x , in SIRH model we have that:

( , )= ( )u cvF t x F x
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and in particular 0= ( )u cvF F x .

In the same way, if ( )cxF x  is the t -price of the convex envelopment of 

( )F x , we have that:  

( , )= ( )d cxF t x F x

and in particular 0= ( )d cxF F x .

Proof. We proceed like as in proof of proposition 4. 

7. SOME EXAMPLES IN THE SIRH

7.1. The future price of gas in an affine model

In this example we consider a particular incomplete market driven by an affine 
jump diffusion like this presented in subsection 4.1, applied to the market of gas 
derivatives where we suppose that the final payoff function of future contract is 
not exponential affine and the interest rate is stochastic. 

We consider the future price of gas, as a function of the actual spot price of 

gas G , the price of petrol PP  which is modellized by a diffusion with jump, the 
convenience yield  and the stochastic volatility v :

= ( , , , )PFG f G P v

where the variables follows a process like this proposed in subsection 4.1., and 
the instantaneous interest rate ( )tr  follows an Ornstein-Uhlenbeck mean-

reverting process:  

4,= ( )t t r tdr a b r dt dW

where the parameters ,a b  and r  are constants, and where 4( )tW  is a Brownian 

motion defined on a probability space , ,( ) . From this hypothesis follow 

that the zcb price ( , )B t T  is: 

2
2( , )= exp ( ) ( ) ( )

4
r

tB t T TR R r C T t C T t
a

where 
2

2
=

2
R b

a
 and the zcb's price volatility is: 
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( , )= ( )rt T C T t

where 
( )1

( )=
a T te

C T t
a

.

So we define the vector tX , as:  

=

P

t t

t

P

X

v

that follows the following diffusion: 

d
= ( , )d ( , ) d dt

t t t t

t

X
t X t t X W I Z

X

where =[1 0 0]I , ( , )tt X , 3( , )tt X  and ( )tW  is a standard 

Brownian vector in 3  and where we may write ( , )tt X  and ( , )tt X  like as 

two affine functions of tX :

0 1

0 1

( , ) =

( , ) ( , ) =

t t

t t t

t X K K X

t X t X H H X

where: 

3
0 0

3 3
1 1

3 3
0 0

(1)
1

(2) 3 3 3
1 1 1

(3)
1

0

= ;

0 0

( ) = 0 0 ; ( )

0 0

0 0 0

= 0 0 0 ;

0 0 0

0 0

= 0 0 ;

0 0

t

K K

K t K t

k

H H

H

H H H

H
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where 0  is the null vector in 3  and where:  

(1) (1) 3
1 1

2

(2) (2) 3
1 1

2 2

(3) (3) 3
1 1

2

0

= 0 ;

0

= 0 ;

0

= 0 ;

v

H H

e

H H

e

H H

In this contest we have to change probability, considering that only the first 

component of X  is the price of risky asset. 

Corollary 16. In an incomplete market driven by an affine jump diffusion and in 

the SIRH, like explicitly before, the set of equivalent martingale measures  for 

the risky asset's price, that is the first component of the vector X , is defined by 
the following Radon-Nycodim derivatives:  

d
=

d
t

t

L  (22) 

where tL  has the same expression presented in (17) of proposition 12. 

In particular ,( )t  are two predictable process in 3  linked by the relation 

(18) equated to a vector 3
tY  where the first component is null, and where 

( , )t T  is zcb's price volatility in the Ornstein-Uhlenbeck hypothesis. 

Proof. We proceed like in proof of proposition 12, but here we consider a mar-

tingale measure only respect the first component of vector X , unlike in the pre-

vious section where all the vector X  represent the risky asset's prices.

So we have the following corollary, like as an application of the Proposition 13; 

Corollary 17. If we suppose that the future price of gas is the actual price of gas 

G , times a function on TX , 1,2( , )g t x , in an incomplete market driven by an 

affine jump diffusion in SIRH, the range of his arbitrage future prices is the gas 
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price G , times [ , [d uFG FG , where uFG  is the vischiosity solution of the follow-

ing:

2

(1) 21
( , ) ( ( , ) ( , )) ( , ) 0

2 ( , )

P
u u

P Pt P P

P
FG t x t x t T FG t x

B t T
 (23) 

subject to the final condition ( , ) ( )uFG T x g x , and where ( , )dFG t x  is the 

vischiosity solution of the following: 

2

(1) 21
( , ) ( ( , ) ( , )) ( , ) 0

2 ( , )

P
d d

P Pt P P

P
FG t x t x t T FG t x

B t T

subject to the final condition ( , ) ( )dFG T x g x  and where , ( , )u d
P PP P

FG t x  is 

the first component in the diagonal of matrix , ( , )u d
xx FG t x  and (1)  is the first 

component of the vector ( , )t x 9.

Proof. We proceed like as in proof of proposition 2 and proposition 12, but 
when we consider the Bellman's equation (21), if we suppose that the condition 

(18) equated to 
t
Y  is satisfied, and that ,  in equation (21), we have to 

impose that ( , )u
x FG t x  is a vector where the components, except the first, are 

null and from this follows that also the second derivatives respect these variables, 

in the principal diagonal of matrix ( , )u
xx FG t x , are null. So the only variable 

that is not null is the first component in the principal diagonal of matrix 

( , )u
xx FG t x , that is the second derivative respect to the first component of vec-

tor X , like in the thesis of proposition. 

For the bound ( , )dFG t x , we proceed in the same way.

Also in the contest of a SIRH model, we may characterize the bounds of the 
range of future gas prices, like in the proposition 14 and proposition 15 in the 

case of (1,1)( , ) ( , ) [0, [t x t T .

7.2. Stochastic volatility model 

Here we consider the example proposed in subsection 4.2 in the contest of 
SIRH model. 

9 Here we have only the first component of the vector ( , )t x , because the change of probabil-

ity from  to , make null only the drift of the first component of the vector X , that is the 

drift of the risky asset's price.
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We suppose that under the probability measure , the dynamics of the vector 
X , with component S  and Y , is the following: 

d
= ( )d dt

t t

t

X
X t W

X

where ( )tX , 2  and ( )tW  is a 2-dimensional -Brownian motion. 

Like as in the previous example, we have to change probability from measure 

to , that is a martingale measure respect to the first component of X , the 
risky asset price; 

Corollary 18. In a standard stochastic volatility model in SIRH, like explicitly be-

fore, the set of equivalent martingale measures  for the risky asset's price, that 

is the first component of the vector X , is defined by the following Radon-
Nycodim derivatives:  

d
=

d
t

t

L  (24) 

where tL  has the following expression: 

0 0

1
= exp d | |d

2

t t

t u u u uL W u

assumed to be a square integrable strictly positive martingale. 

In particular ( )t  is a predictable process in 2  satisfying the relation (18) but 

equated to tY , a 2 -dimensional vector where the first component is null. 

Proof. We proceed like in proof of proposition 12, but here we consider a mar-

tingale measure only respect to the first component of vector X  and we don't 
have a jump process, unlike in the section 6 where all the vector X , that is a 
mixed diffusion, represent the risky asset's prices.

Like as an application of the proposition 12 we have the following; 

Corollary 19. In a standard stochastic volatility model in SIRH, the range of the 
arbitrage prices of a contingent claim which final payoff is a function 

1,2( )Tf X , is [ , [d uf f , where uf  is the vischiosity solution of the following:  
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2

(1) 21
( , ) ( ( , )) ( , ) 0

2 ( , )
u u

t SS

S
f t x t T f t x

B t T
 (25) 

subject to the final condition ( , ) ( )uf T x f x , and where df  is the vischiosity 

solution of the following:  

2

(1) 21
( , ) ( ( , )) ( , ) 0

2 ( , )
d d

t SS

S
f t x t T f t x

B t T

subject to the final condition ( , ) ( )df T x f x  and where , ( , )u d
SS f t x  is the 

first component in the diagonal of matrix , ( , )u d
xx f t x  and (1)  is the first com-

ponent of the vector .

Proof. We proceed like as in proof of proposition 13, but when we consider the 
Bellman's equaton (21), and suppose that the condition (18)) equated to vector 

tY  is satisfied, ( , )uf t x  is the vischiosity super-solution of the following: 

( , ) ( , )inf

1
( , ) ( , ) ( , ) 0

2 ( , ) ( , )

u u
t t x

u
xx

f t x Y f t x

x x
tr t T f t x t T

B t T B t T

 (26) 

with the final condition ( , ) ( )uf T x f x , where  is the set of -adapted

and limited process with values on 2 .
If we suppose that  in equation (26), we have to impose that 

( , )u
x f t x  is a vector where the second component are null and from this follows 

that also the second derivatives respect this variable, in the principal diagonal of 

matrix ( , )u
xx f t x , is null. So the only variable that is not null is the first compo-

nent in the principal diagonal of matrix ( , )u
xx f t x , that is the second derivative 

respect to S , the first component of vector X , like in the thesis of proposition. 

For the bound ( , )df t x , we proceed in the same way. 

We may characterize these extremes of the interval of contingent claims prices, 

like in proposition 15 in the case of (1)( ( , )) [0, [t T .
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RIASSUNTO

L'intervallo dei prezzi d'arbitraggio dei derivati in un mercato incompleto generale 

In questo lavoro si considera un mercato incompleto generale guidato da una diffu-
sione mista di dimensione finita e si caratterizza l'intervallo dei prezzi d'arbitraggio dei de-
rivati attraverso un approccio di super-replicazione in ipotesi di tasso d'interesse deter-
ministico (DIRH) ed in ipotesi di tasso d'interesse stocastico (SIRH). Si presentano 
esempi di applicazione di tali modelli a particolari situazioni d'incompletezza. 

SUMMARY

The range of derivative's arbitrage prices in a general incomplete market 

In this paper we work in a general incomplete market driven by a mixed diffusion of 
finite dimension and we characterize the range of derivative's arbitrage prices by the su-
per-replication approach in the deterministic interest rate hypothesis (DIRH) and in the 
stochastic interest rate hypothesis (SIRH). We give some examples of applications of this 
models in particular incomplete situations. 


