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1. INTRODUCTION

Count data with excess zeros are so common in many disciplines like agriculture, bi-
ology, ecology, engineering, epidemiology, psychology, public health, sociology, etc.
Examples of such data include the number of family members with cholera in a village
in India (M’Kendrick, 1925), the number of over 80-year-old female deaths per day (Has-
selblad, 1969), the number of feotus movements per 5 seconds (Leroux and Puterman,
1992), the number of HIV infected patients (Van den Broek, 1995) and the number of
ambulance requests for heat-related illnesses (Bassil et al., 2010).

To model count data with excess zeros, several zero-inflated models have been stud-
ied in the literature, among them, zero-inflated Poisson distribution (ZIPD) is of partic-
ular interest. The probability mass function (p.m.f) of the distribution is

f (x) =
¨

π+(1−π)e−λ, f o r x = 0
(1−π) e−λλx

x! , f o r x = 1,2, ... .
(1)

The ZIPD has been further investigated by several authors such as Singh (1962), Co-
hen (1963), Martin and Katti (1965), Goraski (1977), Lambert (1992), Bohning (1998),
Kemp (2002), Barriga and Louzada (2014), and Sim et al. (2018). Zero-inflated versions
of the generalized Poisson distribution (ZIGPD) and negative binomial distribution
(ZINBD) were also studied in the literature. Kumar and Ramachandran (2019) con-
sidered zero-inflated hyper-Poisson distribution (ZIHPD) as a relatively better model
compared to both ZIGPD and ZINBD in certain situations, and shown that it is suitable
for both over dispersed and under dispersed data sets, while the ZIGPD overestimates
the dispersion and ZINBD underestimate the dispersion. Saez-Castillo and Conde-
Sanchez (2013) proposed a regression model for the hyper-Poisson distribution (HPD).
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Kumar and Nair (2012) considered an alternative form of the hyper-Poisson distribution
(AHPD). The p.m.f of the AHPD as follows, for m = 0,1,2, ....

P (M = m) =
νm

(ρ)m
φ(1+m;ρ+m;−ν), (2)

in which ρ> 0, ν > 0 and

φ(a; b ; ν) =
∞
∑

p=0

(a)p ν
p

(b )p p!

is the confluent hypergeometric function. The AHPD contains a symbol called Pochham-
mer symbol defined as follows

(a)p = a(a+ 1)(a+ 2)...(a+ p − 1) =
Γ (a+ p)
Γ (a)

, f o r p = 1,2, ... and (a)0 = 1.

A distribution with p.m.f (2), they termed as the “alternative hyper-Poisson distribu-
tion (AHPD)" and hereafter in this paper we use AH P D to denote the distribution.
The Poisson distribution is the special case of AH P D when ρ = 1. Moreover, over-
dispersion and under-dispersion in cases of ρ> 1 and ρ< 1 is also one of the important
characteristic of the AH P D .

Since in certain practical situations the zero-inflated models such as ZIPD, ZIGPD,
ZINBD, ZIHPD etc. are not suitable, while a zero-inflated version of the AHPD gives
better fit. For example in the case of the real life data sets considered in the applica-
tion section of this paper only the zero-inflated version of the AHPD provides best fit
whereas all other existing models are not suitable. So through this paper, we propose a
zero-inflated alternative hyper-Poisson distribution (ZIAHPD) and study its important
properties and other important aspects. Also it is important to note that zero-inflated
version of the AHPD is not studied yet in the literature.

This paper is organized as follows. In Section 2, we present the definition of the
ZIAHPD and obtain its probability generating function, expression for its mean, vari-
ance, factorial moments and recursion formulae for probabilities, factorial moments and
raw moments. The identifiability condition of the model is also derived. Further, we
discuss the esimation of the parameters of the model along with its relevence with the
help of two real life data sets. A test procedure called the generalized likelihood ratio test
(GLRT) is applied for examining the significance of the inflation parameter. In addition,
to identify the performance of the maximum likelihood estimator of the parameters, we
have conducted a simulation study.

Consider the following series representations, those we need in the sequel.

∞
∑

x=0

∞
∑

p=0

A(p, x) =
∞
∑

x=0

x
∑

p=0

A(p, x − p) (3)
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∞
∑

j=0

∞
∑

k=0

(l ) j+k (m)k x j yk

(n) j+k j ! k!
= ξ1(l , m; n; x, y) (4)

where ξ1(l , m; n; x, y) is the Horn-Appel function, which is a generalization of the hy-
pergeometric function in two variables.

2. DEFINITION AND PROPERTIES

In this Section, we introduce the ZIAHPD through deriving its important statistical
properties.

DEFINITION 1. Let Λ be a random variable degenerated at the point zero and let X
follows AHPD(ρ, ν). Assume that Λ and X are independent. Then the random variable W
is said to follow “the zero-inflated alternative hyper-Poisson distribution" (or in short “the
ZIAHPD") if its p.m.f is of the form

g (w) = P (W = w) = πP (Λ= w)+ (1−π)P (X = w)

=







π+(1−π)φ(1;ρ;−ν), w = 0
(1−π) ν

w

(ρ)w
φ(1+w;ρ+w;−ν), w = 1,2, ...

0, ot he r wi s e ,
(5)

in which π ∈ [0,1], ρ> 0 and ν > 0.

In order to prove that the function g (w) given in (5) is a proper p.m.f, consider
∞
∑

w=0

g (w) = π+(1−π)φ(1;ρ;−ν)+ (1−π)
∞
∑

w=1

νw

(ρ)w
φ(1+w;ρ+w;−ν)

= π+(1−π)
∞
∑

w=0

νw

(ρ)w
φ(1+w;ρ+w;−ν)

= π+(1−π)
∞
∑

w=0

g1(w),

where g1(w) =
νw

(ρ)w
φ(1+ w;ρ+ w;−ν) is the p.m.f of the alternative hyper-Poisson

distribution given in (2). Thus,
∞
∑

w=0
g (w) = 1.

Clearly, when ρ = 1, the ZIAHPD reduces to the ZIPD with p.m.f given in (1) and
when π= 0, the ZIAHPD reduces to the AHPD with p.m.f given in (2).
Illustrations of p.m.f of ZIAHPD for different values of π, ρ and ν are given in Figures
1-4. Now we obtain the following results.

RESULT 2.1. The probability generating function (p.g.f) H(t) of the ZIAHPD with p.m.f
(5) is the following.

H (t ) =π+(1−π)ξ1(1,−;ρ; t ν,−ν) (6)
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Figure 1 – Plots of probability mass functions of ZIAHPD for different values of π and ν .
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Figure 2 – Plots of probability mass functions of ZIAHPD for different values of π and ρ.
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Figure 3 – Plots of probability mass functions of ZIAHPD for different values of ρ.
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Figure 4 – Plots of probability mass functions of ZIAHPD for different values of π, ρ and ν.
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where ξ1(a, b ; c ; x, y) is the Horn-Appel function which is a generalized hypergeometric func-
tion in two variables.

PROOF. By definition, the p.g.f of the ZIAHPD having p.m.f (5) is given by

H (t ) =
∞
∑

w=0

g (w)t w (7)

= [π+(1−π)φ(1;ρ;−ν)]+
∞
∑

w=1

(1−π)t w νw

(ρ)w
φ(1+w;ρ+w;−ν)

= π+(1−π)φ(1;ρ;−ν)+ (1−π)
∞
∑

w=1

∞
∑

r=0

(t ν)w

(ρ)w

(1+w)r (−ν)r

(ρ+w)r r !

= π+(1−π)φ(1;ρ;−ν)+ (1−π)
� ∞
∑

w=0

∞
∑

r=0

(t ν)w

(ρ)w

(1+w)r (−ν)r

(ρ+w)r r !

�

(8)

− (1−π)
∞
∑

r=0

(1)r (−ν)r

(ρ)r r !
,

which implies the following in the light of (4).

H (t ) =π+(1−π) φ(1;ρ;−ν)+ (1−π) ξ1(1,−;ρ; t ν,−ν)− (1−π) φ(1;ρ;−ν). (9)

On simplifying (9), gives (6). 2

RESULT 2.2. For r ≥ 1, an expression for the factorial moments µ[r ] of the ZIAHPD
with p.m.f (5) is the following.

µ[r ] = (1−π)
ν r r !
(ρ)r

(10)

PROOF. The factorial moment generating function F (t ) of the ZIAHPD with p.g.f
(6) is

F (t ) = H (1+ t )
= π+(1−π)ξ1(1+ r,−;ρ+ r ; (t + 1)ν ,−ν). (11)

On differentiating (11) r times with respect to t and putting t = 1, we get

F (r )(1) = (1−π) ν
r r !
(ρ)r

ξ1(1+ r,−;ρ+ r ; ν ,−ν), (12)

which on simplication gives (10), since ξ1(1+ r,−;ρ+ r ; ν ,−ν) = 1.. 2

By using Result 2.2, we obtain the following corollaries.
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COROLLARY 2. Mean and Variance of the ZIAHPD are

M ean = (1−π) ν
ρ
= ϑ, say

and

V a r iance = ϑ

�

1+ ν
(π(1+ρ)− (1−ρ))

ρ(1+ρ)

�

.

COROLLARY 3. The third and fourth moments of the ZIAHPD are, respectively

µ′3 = E(W 3) =
(1−π)ν
ρ

�

6ν2

(ρ+ 1)(ρ+ 2)
+

6ν
ρ+ 1

+ 1
�

(13)

and

µ′4 = E(W 4) =
(1−π)ν
ρ

�

24ν3

(ρ+ 1)(ρ+ 2)(ρ+ 3)
+

36ν2

(ρ+ 1)(ρ+ 2)
+

14ν
ρ+ 1

+ 1
�

. (14)

By using Corollary 2 and Corollary 3, we have computed measures of skewness and
kurtosis with the help of Mathematica software and plotted the values in Figure 5, Figure
6, Figure 7 and Figure 8. From the Figures, it can be seen that the distribution enjoys
positively and negatively skewed nature and both platykurtic and leptokurtic behaviour.

In the light of Corollary 2, we have the following important result, which depicts
the nature of dispersion of the distribution.

RESULT 2.3. The ZIAHPD becomes under-dispersed when ρ < 1−π
1+π , over-dispersed

when ρ> 1−π
1+π and equi-dispersed when ρ= 1−π

1+π .

Next we deal certain recurrence formulae for probabilities, raw moments and factorial
moments of the ZIAHPD.

RESULT 2.4. The probabilities gw (π,ρ∗, ν) = g (w) of the ZIAHPD satisfies the follow-
ing recursion formula, in which ρ∗ = (1,ρ)

g1(π,ρ∗, ν) = ν ρ−1 {g0(π,ρ∗+ 1, ν)−π} , f o r w = 0 (15)

and
(w + 1)gw+1(π,ρ∗, ν) = ν ρ−1 {gw (π,ρ∗+ 1, ν)} , f o r w > 0. (16)

PROOF. The p.g.f of the ZIAHPD can be written as

H (t ) =π+(1−π)ξ1(1,−;ρ; t ν ,−ν)

=
∞
∑

w=0

t w gw (π,ρ∗, ν). (17)
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Figure 5 – Plots of skewness of ZIAHPD for particular values of its parameters.

On differentiating (17) with respect to t , we have the following.

∞
∑

w=0

(w + 1)gw+1(π,ρ∗, ν)t w = (1−π) ν
ρ
ξ1(2,−;ρ+ 1; t ν ,−ν). (18)
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Figure 6 – Plots of skewness of ZIAHPD for particular values of its parameters.

Also, from (17) we have

(1−π)ξ1(2,−;ρ+ 1; t ν ,−ν) =
∞
∑

w=0

t w gw (π,ρ∗+ 1, ν)−π. (19)



432 C. Satheesh Kumar and Rakhi Ramachandran

ν 0.3,π=.00003

ν=0.3,π=.00003

ν=0.3,π=0.06

ν=0.3,π=0.2

ν=0.3,π=0.4

0.1 0.2 0.3 0.4 0.5
ρ

- 15

- 10

- 5

Kurtosis

ρ 2, .00001

ρ=2, =.00003

ρ=2, =.06

ρ=2, =.2

ρ=2, =.4

1 2 3 4 5

50

100

150

200

250

300

Kurtosis

Figure 7 – Plots of kurtosis of ZIAHPD for particular values of its parameters.

Combining relation (18) and (19) together lead the following.

∞
∑

w=0

(w + 1)gw+1(π,ρ∗, ν)t w =
ν

ρ

� ∞
∑

w=0

t w gw (π,ρ∗+ 1, ν)−π
�

. (20)
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Figure 8 – Plots of kurtosis of ZIAHPD for particular values of its parameters.

Now, equating the coefficients of t 0 on both sides of (20) we get (15), and on equating
the coefficients of t w on both sides of (20), we get (16). 2

RESULT 2.5. For r ≥ 0, the raw moments µr (ρ
∗) = µr of the ZIAHPD satisfies the
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following recursion formula

µr+1(ρ
∗) = ν ρ−1

¨

r
∑

k=0

�

r
k

�

µr−k (ρ
∗+ 1)−π
«

(21)

PROOF. For any t ∈ℜ= (−∞,∞) and i =
p
−1, the characteristic function of the

ZIAHPD is

ψ(t ) =
∞
∑

r=0

µr (ρ
∗)
(i t )r

r !

= H (e i t )
= π+(1−π)ξ1(1,−;ρ; νe i t ,−ν). (22)

Differentiating (22) with respect to t , we get

(1−π) νe
i t

ρ
ξ1(2,−;ρ+ 1; νe i t ,−ν) =

∞
∑

r=1

µr (ρ
∗)
(i t )r−1

(r − 1)!
. (23)

Using (23), we obtain

(1−π)ξ1(2,−;ρ+ 1; νe i t ,−ν) =
∞
∑

r=0

µr (ρ
∗+ 1)

(i t )r

r !
−π. (24)

Combining (23) and (24), we obtain the following.

∞
∑

r=0

µr+1(ρ
∗)
(i t )r

r !
= νρ−1e i t

� ∞
∑

r=0

µr (ρ
∗+ 1)

(i t )r

r !
−π
�

= νρ−1

� ∞
∑

r=0

∞
∑

k=0

(i t )k

k!
µr (ρ

∗+ 1)
(i t )r

r !
−π

∞
∑

r=0

(i t )r

r !

�

= νρ−1

� ∞
∑

r=0

r
∑

k=0

(i t )k

k!
µr−k (ρ

∗+ 1)
(i t )r−k

(r − k)!
−π

∞
∑

r=0

(i t )r

r !

�

= νρ−1

� ∞
∑

r=0

r
∑

k=0

(i t )r

k!(r − k)!
µr−k (ρ

∗+ 1)−π
∞
∑

r=0

(i t )r

r !

�

. (25)

Now, equating the coefficients of (r !)−1(i t )r on both sides of (25), we get (21). 2

RESULT 2.6. For r ≥ 1, the factorial momentsµ[r ](ρ
∗) =µ[r ] of the ZIAHPD satisfies

the following recursion formula, in which µ[1](ρ
∗) = ϑ

µ[r+1](ρ
∗) = νρ−1
¦

µ[r ](ρ
∗+ 1)−π
©

(26)
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PROOF. By using (6) the factorial moment generating function F (t ) of the ZIAHPD
can be written as

F (t ) = G(1+ t )
= π+(1−π)ξ1(1,−;ρ; ν(1+ t ),−ν)

=
∞
∑

r=0

µ[r ](ρ
∗)

t r

r !
. (27)

On differentiating (27) with respect to t , we have

(1−π)νρ−1 ξ1(2,−;ρ+ 1; (1+ t )ν ,−ν) =
∞
∑

r=1

µ[r ](ρ
∗)

t r−1

(r − 1)!
. (28)

By using (27), we obtain the following from (28).

∞
∑

r=0

µ[r+1](ρ
∗)

t r

r !
= νρ−1

� ∞
∑

r=0

µr (ρ
∗+ 1)

t r

r !
−π
�

. (29)

Finally, on equating the coefficients of (r !)−1 t r on both sides of (29), we get (26). 2

Model Identifiability: Let W be a discrete random variable having p.m.f p(w) =
P (W = w) of the form p(w) = π1 p1(w) +π2 p2(w) + ...+πg pg (w), where for each

j = 1,2, . . . , g ; π j > 0 such that
g
∑

j=1
π j = 1, p j (w) ≥ 0 and

g
∑

j=1
p j (w) = 1. Then, we

say that W has a mixture distribution and p(w) is a finite mixture of distributions.
The parameters π1,π2, . . . ,πg are known as mixing weights which, p1, p2, . . . , pg are
the components of the mixture. We denote Ψ as the collection of all distinct parameters
occuring in the components and Θ as the complete collection of all distinct parameters
occuring in the mixture model.

A parametric family of densities f (w j ;Ψ) is identifiable if distinct values of the pa-

rameter Ψ determine distinct members of the family of densities
¦

f (w j ;ψ) :ψ ∈Ω
©

,
where Ω is a specified parameter space; that is

f (w j ;ψ) = f (w j ;ψ
∗) (30)

if and only if
ψ=ψ∗ (31)

Identifiability for mixture distribution is slightly different. Suppose that f (w j ;ψ)
has two component densities, say, fi (w j ;β j ) and fh (w j ;β j ), that belongs to the same
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parametric family.
Let

f (w j ;ψ) =
g
∑

i=1

πi fi (w j ;βi )

and

f (w j ;ψ∗) =
g
∑

i=1

πi fi (w j ;β
∗
i )

be any two members of a parametric family of mixture densities. The class of finite
mixtures is said to be identifiable forψ ∈Ω if f (w j ;ψ)≡ f (w j ;ψ

∗) if and only if g = g∗
and we can permute the component labels so that πi = π

∗
i and fi (w j ;βi ) = fi (w j ;β

∗
i )

for i = 1,2, ..., g .
Now, we use the following lemma which we need in the sequel for establishing the

identifiability condition of the model considered in this paper.

LEMMA 2.1. (Titterington et al., 1985) A necessary and sufficient condition that is iden-
tifiable is that the distribution function of convex combination of mixture densities is linearly
independent over the field of real numbers.

DEFINITION 4. A random variable W is said to have g component mixture model
of zero-inflated alternative hyper-Poisson distribution if it has the following p.m.f p(w), in

which 0≤π j ≤ 1, for j = 1,2, ..., k,
k
∑

j=1
π j = 1 and w = 0,1,2, ...

f (w) =
k
∑

j=1

π j q j (w) (32)

where

q j (w) =
νw

j
�

ρ j

�

w

φ(1+w;ρ j +w;−ν j ) (33)

with ν j > 0 and ρ j > 0 for each j = 1,2, . . . , k.

RESULT 2.7. The identifiability condition for ZIAHPD with p.m.f g (w) given in (5) is
νr ̸= νs and ρr ̸= ρs for positive integers r and s assuming values from 1,2, . . . , k with r ̸= s
and w = 0,1,2, ...

PROOF. Consider the equation

a1G1(w)+ a2G2(w) = 0 (34)
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where a1 and a2 be any two arbitrary real numbers, G1(w) =
∑w

j=1 g ( j ) and G2(w) =
∑w

j=1 h( j ), for w = 0,1, ... in which h j obtained from g j by replacing ν j by σ j and ρ j by
τ j . Assume that for each j = 1,2, ν j ̸= σ j and ρ j ̸= τ j . Thus,

G1(w) =π+(1−π)φ(1+ j ;ρ+ j ;−ν)+
w
∑

j=1

(1−π)
ν j

j
�

ρ j

�

j

φ(1+ j ;ρ+ j ;−ν) (35)

G2(w) =π+(1−π)φ(1+ j ;τ+ j ;−σ)+
w
∑

j=1

(1−π)
σ j

j
�

τ j

�

j

φ(1+ j ;τ+ j ;−σ) (36)

Combining (32), (33) and (34), we have

a1

w
∑

j=0

ν j
1

(ρ1) j
φ(1+ j ;ρ1+ j ;−ν1) = a2

w
∑

j=0

σ j
1

(τ1) j
φ(1+ j ;τ1+ j ;−σ1) (37)

a1

w
∑

j=0

ν j
2

(ρ2) j
φ(1+ j ;ρ2+ j ;−ν2) = a2

w
∑

j=0

σ j
2

(τ2) j
φ(1+ j ;τ2+ j ;−σ2) (38)

Eliminate a1 using (32) and (33), we have a2 = 0. From (32), we obtain a1 = 0 shows
that G1 and G2 are linearly independent. 2

3. MAXIMUM LIKELIHOOD ESTIMATION

Here we consider the estimation by the method of maximum likelihood for estimating
the parameters π, ρ and ν of the ZIAHPD. For any w = 0,1,2, ..., let A(w) be the
observed frequency of w events and let p be the highest value of w observed. Then the
likelihood function of the sample is given by

L(θ; w) =
p
∏

w=0

[g (w)]A(w),

where g (w) is the p.m.f of the ZIAHPD given in (5).
Now L(θ; w) can be written as

L(θ; w) = (g0)
s

p
∏

w=1

(g1(w))
A(w),

where s =A(0), g0 is the p.m.f of the ZIAHPD when w = 0 and g1(.) is the p.m.f of the
distribution when w = 1,2, ... .
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Then the log-likelihood function can be written as

ln L(θ; w) = s ln [π+(1−π)φ(1;ρ;−ν)] (39)

+
p
∑

w=1

A(w) ln
�

(1−π) ν
w

(ρ)w
φ(1+w;ρ+w;−ν)

�

.

Assume that π̂, ρ̂ and ν̂ be the maximum likelihood estimators of the parameters π,
ρ and ν of the ZIAHPD. Now, on differentiating the log-likelihood function (39) with
respect toπ, ρ and ν and equating to zero, we obtain the following likelihood equations:

∂ log L
∂ π

= 0

implies

s
1−φ(1;ρ;−ν)

π+(1−π)φ(1;ρ;−ν)
− (1−π)

p
∑

w=1

A(w) = 0, (40)

∂ log L
∂ ρ

= 0

s(1−π)
π+(1−π)φ(1;ρ;−ν)

∞
∑

k=0

(−ν)kΓ (ρ)
Γ (ρ+ k)

[ψ(ρ)−ψ(ρ+ k)]+
p
∑

w=1

A(w) (41)

¨ ∞
∑

k=1

(1+w)k
k!

(−ν)k
Γ (ρ+w)
Γ (ρ+w + k)

[ψ(ρ+w)−ψ(ρ+w + k)]−ψ(ρ)
«

= 0

and
∂ log L
∂ ν

= 0

implies

(−s)(1−π)φ(2;ρ+ 1;−ν)
ρ(π+(1−π)φ(1;ρ;−ν))

+
p
∑

w=0

A(w)
�

w
ν
−

φ(2+w;ρ+w + 1;−ν)
(ρ+w)φ(1+w;ρ+w;−ν)

�

= 0 (42)

in which ψ(ρ) = ∂
∂ ρ l o gΓ (ρ).

On solving the likelihood equations (40), (41) and (42) with the help of Mathematical
software, say Mathematica, one can obtain the maximum likelihood estimators of the
parameters of the proposed distribution.



On Zero-inflated Alternative Hyper-Poisson Distribution 439

4. TESTING

In order to test the significance of the inflation parameter π of the ZIAHPD, we adopt
the following generalized likelihood ratio test (GLRT) procedure. Here the null hypoth-
esis is

H0 :π= 0 V s H1 :π ̸= 0.

The test statistic suggested in the case of GLRT is given by

−2 lnψ= 2 (ι1− ι2) , (43)

where, ι1 = ln L(θ̂; w), where θ̂ is the maximum likelihood estimator for θ = (π,ρ, ν)
with no restrictions, and l nL(θ̂∗; w), in which θ̂∗ is the maximum likelihood estimator
for θ under the null hypothesis H0. The test statistic defined in (43) is asymptotically
distributed as χ 2 with one degree of freedom.

5. DATA ILLUSTRATION

In this Section, we consider certain real life data sets for illustrating the methods dis-
cussed in Sections 3 and 4. The first data set is on the distribution of data of Corn
borers per hill (Rodriguez-Avi et al., 2007) and the second data is on the distribution
of currency and banking crisis (Giles et al., 2010). We have fitted the ZIAHPD to all
these data sets and considered the fitting of the models - HPD, AHPD, ZIPD, ZINBD,
ZIGPD, ZIHPD for comparison. For comparing the models we computed the values of
χ 2, AIC, BIC and AICc. The numerical results obtained are presented in Tables 1 and
2. Based on the computed values of χ 2, AIC, BIC and AICc as presented in Tables 1 and
2, one can observe that the ZIAHPD gives a better fit to all these data sets considered.

We have also calulated the values of the test statistic given in (43) and are included
in Table 3. The critical value of the test having 5% level of significance and degree of
freedom one is 3.84, so that the null hypothesis is rejected in all the cases. Thus, we
conclude that the additional parameter π in the model is significant.

We have also plotted the observed frequency curves of the data sets along with the
fitted densities corresponding to the HPD, AHPD, ZIPD, ZINBD, ZIGPD, ZIHPD
and the ZIAHPD. From Tables: 1, 2 and Figures: 9, 10, it can be seen that all these
models are not given best fit to the data sets while the ZIAHPD only gives best fit based
on the P-value and Chi-square value. And also the values of information measures like
AIC, BIC and AICc support the factor that the ZIAHPD can be considered as a suitable
model compared to the other models discussed in the paper.

6. SIMULATION

Since it is difficult to compare the theoretical performances of estimators of the pa-
rameters of the ZIAHPD obtained by the method of maximum likelihood, we have
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TABLE 1
Distribution of data of Corn borers per hill (Rodriguez-Avi et al., 2007) and the expected frequencies
computed using hyper-Poisson, alternative hyper-Poisson, zero-inflated Poisson, zero-inflated negative

binomial, zero-inflated generalized Poisson, zero-inflated hyper-Poisson and ZIAHPD.

Count Observed frequency HPD AHPD ZIPD ZINBD ZIGPD ZIHPD ZIAHPD

0 47 49.778 29.4 21.3 71.80 70.6 41.59 45.0
1 23 48.848 57.71 14.4 28.8 15.09 48.15 23.5
2 27 16.59 24.722 20.5 12.40 26.44 21.47 29.5
3 9 3.31 5.99 24.8 5.24 7.847 6.29 12.9
4 7 0.474 1.042 22.3 1.26 0.0232 1.25 5.2
5 7 1.0 1.1357 16.7 0.5 4.64×10−8 0.025 3.9

Total 120 120 120 120 120 120 120 120

df 1 2 3 1 1 1 2

Estimates ρ=0.5 ρ=0.55 ρ=3.5 ρ=4.22 ρ=3.15 ρ=0.5 ρ=0.22
ν=0.5 ν=0.59 π=0.1 ν=0.83 ν=3.7×10−7 ν=0.7 ν=0.92

π=0.26 π=0.37 π=0.0.06 π=0.69

χ 2-value 155.99 97.48 64.40 63.49 41.13 44.45 4.57

p-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.102

AIC 721.12 612.15 499.84 603.08 1195.08 688.23 489.58

BIC 720.7 612.05 506.46 602.45 1194.92 687.61 488.96

AICc 725.12 616.46 503.84 612.08 1207.08 700.23 501.58

TABLE 2
Distributions of currency and banking crises (Giles et al., 2010) and the expected frequencies

computed using hyper-Poisson, alternative hyper-Poisson, zero-inflated Poisson, zero-inflated negative
binomial, zero-inflated generalized Poisson, zero-inflated hyper-Poisson and ZIAHPD.

Count Observed frequency HPD AHPD ZIPD ZINBD ZIGPD ZIHPD ZIAHPD

0 45 94.11 50.7 68.88 98.22 80.94 54.57 49.33
1 44 53.614 77.02 60.49 31.8 39.36 58.932 39.9
2 19 14.10 30.66 27.28 13.66 30.88 34.38 23.2
3 17 3.43 7.184 8.17 9.19 15.778 11.62 20.66
4 19 1.711 1.19 1.834 7.86 0.0418 6.85 15.2
5 13 0.0318 0.155 0.33 5.34 0.0000102 0.54 10.43
6 6 0.0026 0.0585 0.014 0.63 4.02 ×10−11 0.0866 4.2
7 4 0.000195 0.03248 0.0022 0.36 1.7 ×10−18 0.0216 4.08

Total 167 167 167 167 167 167 167 167

df 3 1 1 1 1 1 1

Estimates ρ=0.92 ρ=0.59 ρ=0.9 ρ=0.7 ρ=3.67 ρ=0.63 ρ=0.20
ν=0.49 ν=0.59 π=0.01 ν=0.7 ν=0.0000002 ν=0.89 ν=0.89

π=0.1 π=0.25 π=0.06 π=0.67

χ 2-value 588.81 313.68 243.92 109.22 37.17 32.47 3.05

p-value 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.25

AIC 1605.6 1261.3 1179.94 1083.9 3205.6 1106.96 936.8

BIC 1605.8 1261.4 1180.1 1084.14 3211.6 1107.22 937.1

AICc 1608.06 1263.7 1182.3 1091.4 3205.8 1112.98 942.8
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TABLE 3
Calculated value of the test statistic in case of the generalised likelihood ratio test.

ln L(θ̂∗; w) ln L(θ̂; w) Test statistic

Data set 1 -304.23 -241.79 124.88
Data set 2 -628.67 -465.43 326.46
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Figure 9 – Frequency curves corresponding to data set 1

attempted a brief simulation study. We have computed the absolute bias and standard
errors in case of each simulated samples. The simulation results are summarised in Table
4 corresponding to the sample of sizes 100, 200 and 500 for the following two parameter
sets.

1. π= 0.80, ρ= 1.2, ν = 0.90 (over-dispersion)

2. π= 0.60, ρ= 0.20, ν = 0.90 (under-dispersion)

Probability plots corresponding to the simulated data sets in case of parameter set 1
and parameter set 2 are as given in Figures: 11, 12.

From Table 4 and Figure 11 and 12, it can be observed that as the sample size in-
creases, both absolute bias and standard errors of the parameter sets are in decreasing
order among all the cases.
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Figure 10 – Frequency curves corresponding to data set 2
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Figure 11 – Probability plots corresponding to parameter set 1.
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TABLE 4
Absolute bias and standard errors (given in paranthesis) of each estimators of the ZIAHPD obtained

by the method of maximum likelihood in case of parameter sets 1 and 2.

MLE

Parameter set Sample size π̂ ρ̂ ν̂

n = 100 0.08 (0.024) 0.22 (0.08) 0.16 (0.05)
1 n = 200 0.02 (0.017) 0.18 (0.07) 0.12 (0.04)

n = 500 0.004 (0.009) 0.02 (0.033) 0.11 (0.019)

n = 100 0.12 (0.14) 0.22 (0.07) 0.18 (0.17)
2 n = 200 0.044 (0.037) 0.12 (0.032) 0.096 (0.075)

n = 500 0.030 (0.025) 0.04 (0.0046) 0.056 (0.036)
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Figure 12 – Probability plots corresponding to parameter set 2.

7. CONCLUDING REMARKS

This paper introduces a zero-inflated version of the alternative hyper-Poisson distribu-
tion namely ‘the zero-inflated alternative hyper-Poisson distribution (ZIAHPD)’. Im-
portant statistical properties of the distribution such as moments, generating functions,
recursion formulae etc have been studied. The estimation of the parameters of the dis-
tribution have been attempted using maximum likelihood estimation. In addition, the
generalized likelihood ratio test procedure is constructed for testing the significance of
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the inflation parameter. Two real life data applications are considered for illustrating
the usefulness of the proposed model compared to the existing models such as HPD,
AHPD, ZIPD, ZINBD, ZIGPD and ZIHPD. It can be seen that all these models are
not given best fit to the data sets while the ZIAHPD only gives best fit based on the
Chi-square value and P-value. The values of information measures like AIC, BIC and
AICc also reveals the factor that the ZIAHPD can be considered as a suitable model
compared to the other models discussed in the paper. A brief simulation study has been
carried out for assessing the efficiency of the estimation procedure discussed in the pa-
per. Several characteristic properties as well as inferential aspects of the new model and
related regression models are yet to study, those results we wish to include in another
publication.
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SUMMARY

Here we develop a zero-inflated version of the alternative hyper-Poisson distribution and dis-
cuss its important statistical properties such as probability generating function, expressions for
mean, variance, factorial moments, skewness, kurtosis, recursion formula for probabilities, raw
moments and factorial moments. Then the maximum likelihood estimation of the parameters
of the zero-inflated alternative hyper-Poisson distribution is discussed and certain test procedures
are constructed for testing the significance of the inflation parameter. All the procedures are il-
lustrated with the help of certain real life data sets. Moreover, a brief simulation study is carried
out for assessing the performances of the maximum likelihood estimators of the parameters of the
proposed distribution.

Keywords: Confluent hypergeometric function; Count data models; Generalized likelihood ratio
test; Horn-Appel function; Maximum likelihood estimation; Model selection; Simulation.
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