
STATISTICA, anno LXXIX, n. 3, 2019

COMPARISONS OF METHODS OF ESTIMATION FOR A NEW
PARETO-TYPE DISTRIBUTION

Ali Saadati Nik
Department of Statistics, University of Mazandaran, Babolsar, Iran

Akbar Asgharzadeh 1

Department of Statistics, University of Mazandaran, Babolsar, Iran

Saralees Nadarajah
Department of Mathematics, University of Manchester, Manchester, UK

1. INTRODUCTION

The Pareto distribution was first proposed by Pareto (1964) as a model for the distri-
bution of income. This distribution is used to describe the allocation of wealth among
individuals in many societies. This distribution is now applied in different fields such
us insurance, business, economics, engineering, physics, hydrology, geology and relia-
bility. In hydrology, the Pareto distribution is applied to extreme events such as annual
maximum one-day rainfalls and river discharges. Some authors discussed the applica-
tions of the Pareto distribution in physics. Newman (2005) provided many quantities
measured in physical systems where the Pareto distribution has applications. Zaninetti
and Ferraro (2008) provided an application of the Pareto distribution to astrophysics and
more precisely to the statistical analysis of masses of stars and of diameters of asteroids.
For various applications of the Pareto distribution, one could refer to Arnold (1983),
Johnson et al. (1994) and Dagum (2006).

The new Pareto-type (NP) distribution was recently proposed by Bourguignon et al.
(2016) to model income and reliability data. This distribution is a generalization of
the well-known Pareto distribution. The two-parameter NP distribution (denoted by
NP(α,β)) has the probability density function (PDF)

f (x;α,β) =
2α (β/x)α+1

β[1+(β/x)α]2
, x ≥β, α > 0, β> 0, (1)
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where α andβ are shape and scale parameters, respectively. The cumulative distribution
function (CDF) of the NP distribution is

F (x;α,β) = 1−
2βα

xα+βα
, x ≥β, α > 0, β> 0. (2)

As mentioned by Bourguignon et al. (2016), for high incomes, the NP CDF closely
approximates the form

F (x;α,β) = 1−Ax−α,

which is the form predicted by Pareto’s law. Therefore, the NP distribution converges
in distribution to the Pareto distribution for x sufficiently large.

The NP PDF is decreasing. So, similarly to the Pareto distribution, the NP distri-
bution can be used as a model for the distribution of income. The income distributions
with decreasing PDFs show that the “probability” or fraction of the population that
owns a small amount of wealth per person is rather high, and then decreases steadily as
wealth increases, see e.g., Sankaran et al. (2014). The hazard rate of the NP distribution
can be upside-down bathtub (unimodal) shaped or decreasing depending on the values
of its parameters. Decreasing and unimodal hazard rates have many applications in re-
liability and survival analysis. A decreasing failure rate describes a phenomenon where
the probability of an event in a fixed time interval in the future decreases over time. A
practical example is infant mortality where earlier failures are eliminated or corrected.
A unimodal hazard rate function is used to model a failure rate that has a relatively high
rate of failure in the middle of expected life time. When failures of products are caused
by fatigue and corrosion, the corresponding failure rates exhibit unimodal shapes (Lai
and Xie, 2006). Also, in some medical situations, for example breast cancer and infection
with some new viruses, the hazard rate is unimodal shaped, e.g., Demicheli et al. (2004)
and Abdi et al. (2019). Bourguignon et al. (2016) studied mathematical properties of the
NP distribution and showed the usefulness of this distribution for modeling income and
reliability data by analyzing seven real data sets.

The aim of this paper is to consider different estimation methods for estimating the
unknown parameters of the NP distribution from both frequentist and Bayesian points
of view. We first compute the maximum likelihood estimates (MLEs) which are the
most natural frequentist estimates. We then discuss the existence and uniqueness of
the MLEs. We also consider other frequentist estimates including the method of mo-
ment estimates (MMEs), percentile estimates, least square estimates (LSEs), weighted
least square estimates (WLSEs) and maximum product of spacing (MPS) estimates. We
further consider the Bayes estimates of the unknown parameters under the squared er-
ror loss (SEL) function. Since the Bayes estimates can not be obtained in closed forms,
an importance sampling method is used to compute the Bayes estimates and the asso-
ciate credible intervals. Finally, we compare the performance of the different estimates
using extensive computer simulations. Comparisons of estimation methods for other
statistical distributions have been discussed in the literature, see e.g., Gupta and Kundu
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(2001), Kundu and Raqab (2005), Alkasabeh and Raqab (2009), Asgharzadeh et al. (2011)
and Dey et al. (2014).

The paper is organized as follows. In Section 2, we provide the MLEs. We also
discuss in this section the conditions for existence and uniqueness of the MLEs. Other
estimation methods are presented in Sections 3-7. The interval estimates of α for known
β are described in Section 8. A Monte Carlo simulation study is used to compare the
performance of the different estimates in Section 9. Some numerical examples are given
in Section 10 to illustrate different methods of estimation discussed in this paper. The
paper is concluded in Section 11.

2. MAXIMUM LIKELIHOOD ESTIMATES

In this section, the MLEs of α and β of the NP(α,β) distribution are considered. If
x1, . . . , xn is an observed random sample from NP(α,β), then the likelihood function is

L(α,β) =
n
∏

i=1

f (xi ,α,β) = (
2α
β
)n

n
∏

i=1

(β/xi )
α+1

(1+(β/xi )α)2
, β≤ x(1), (3)

where x(1) =min(x1, . . . , xn). The log-likelihood function for β≤ x(1) is

l (α,β) = log L = n log(2α)− n log(β)+ (α+ 1)
n
∑

i=1

log(
β

xi
)

−2
n
∑

i=1

log
�

1+(
β

xi
)α
�

. (4)

The MLEs of the unknown parameters are obtained by maximizing the log-likelihood
function in (4) with respect to α and β. It can be seen that l (α,β) is monotonically in-
creasing withβ, so the MLE ofβ is bβ= x(1). Substituting bβ in (4), we obtain the profile
log-likelihood function of α without the additive constant as

g (α) = l (α, x(1)) = n log(2α)− n log(x(1))+ (α+ 1)
n
∑

i=1

log(
x(1)
xi
)

−2
n
∑

i=1

log
�

1+(
x(1)
xi
)α
�

. (5)

Therefore, the MLE of α, say bα, can be obtained by maximizing (5) with respect to α.
Consequently, the MLE bα of α is obtained as the solution to the following equation

h(α) =
∂ l (α, x(1))

∂ α
=−2

n
∑

i=1

(
x(1)
xi
)α log

� x(1)
xi

�

1+(
x(1)
xi
)α

+
n
∑

i=1

log
� x(1)

xi

�

+
n
α
= 0. (6)
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There is no closed-form expression for the MLE bα and its computation has to be per-
formed numerically using a nonlinear optimization algorithm. Some iterative methods
can be applied to solve the likelihood equation and compute the estimate bα. It can be
shown that the MLE bα can be derived as a fixed-point solution of the equation H (α) = α,
where

H (α) =
n

2
∑n

i=1

(
x(1)
xi
)α log

� x(1)
xi

�

1+(
x(1)
xi
)α
−
∑n

i=1 log
� x(1)

xi

�

.

Note that

lim
α→0

h(α) =∞, lim
α→∞

h(α) =
n
∑

i=1

log
� x(1)

xi

�

< 0

and

h ′(α) =
∂ 2 l (α, x(1))

∂ 2α
=−2

n
∑

i=1

(
x(1)
xi
)α log2

� x(1)
xi

�

�

1+(
x(1)
xi
)α
�2 − n

α2
< 0.

Therefore, h(α) is a continuous function on (0,∞)which decreases monotonically from
+∞ to negative values. Therefore, the MLE of α which is a solution to h(α) = 0, exists
and is unique.

Let us now consider the MLE of α when the scale parameter β is known. Without
loss of generality, we can assume that β = 1. With β = 1, the log-likelihood function
becomes

l (α) = n log(2α)− (α+ 1)
n
∑

i=1

log(xi )− 2
n
∑

i=1

log
�

1+(
1
xi
)α
�

. (7)

The MLE of α can be obtained directly by maximizing the log-likelihood function in
(7) with respect to α, or can be obtained as the solution to the following equation

h(α) =
∂ l (α)
∂ α

=
n
α
−

n
∑

i=1

log(xi )+ 2
n
∑

i=1

log(xi )
(1+ xαi )

2
= 0. (8)

It can be shown that the MLE of α can be obtained as a fixed solution of α = H (α),
where

H (α) =
n

∑n
i=1 log(xi )− 2

∑n
i=1

log(xi )
(1+xαi )

2

.

Again, note that since limα→0 h(α) =∞, limα→∞ h(α) =−
∑n

i=1 log xi < 0 and
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h ′(α) =
∂ 2 l (α)
∂ 2α

=−2
n
∑

i=1

xαi log2(xi )
(1+ xαi )

2
− n
α2
< 0,

the MLE of α which is a solution to h(α) = 0, exists and is unique.

3. METHOD OF MOMENT ESTIMATES

Here we obtain the MMEs of α and β of the NP(α,β) distribution. If the random
variable X has the NP(α,β) distribution, then the r -th moment of X is given by

E(X r ) = 2α βα
∫ ∞

β

x r+α−1

(xα+βα)2
dx,

= 2α βr
∫ 1

0
yα−r−1 (1+ yα)−2dy

= 2αβr Jr (α), r <α,

where

Jr (α) =
∫ 1

0
yα−r−1 (1+ yα)−2dy.

The above integral can be computed numerically in software such as MAPLE, MATH-
EMATICA and R.

Note that the moments of X can be obtained as a series too. By using the negative
binomial expansion,

(1+ x)−2 =
∞
∑

j=1

j (−1) j−1 x j−1, |x|< 1,

we can write

E(X r ) = 2α βr
∫ 1

0
yα−r−1 (1+ yα)−2dy

= 2α βr
∞
∑

j=1

j (−1) j−1
�∫ 1

0
yα j−r−1dy

�

= 2α βr
∞
∑

j=1

j (−1) j−1

α j − r
, r <α .

Therefore, the first and second moments of X are
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E(X ) = 2α β
∞
∑

j=1

j (−1) j−1

α j − 1
, α > 1,

E(X 2) = 2α β2
∞
∑

j=1

j (−1) j−1

α j − 2
, α > 2.

In Table 1, we have presented the first and second moments of the NP distribution for
some selected values of the shape parameter α, when β = 1. These values have been
computed numerically using R.

TABLE 1
First and second moments of the standard NP distribution for different shape parameter α.

α 0.5 1 1.5 2 2.5 3 3.5 4
E(X) - - 4.342 2.570 2.015 1.747 1.590 1.487
E(X 2) - - - - 8.106 4.342 3.147 2.570

Now, to obtain the MMEs of the unknown parameters α and β, we need to equate
the sample moments with the population moments and solve the following equations:

2α β A1(α) = x, (9)

and
2α β2 A2(α) = x2, (10)

where Ar (α) =
∑∞

j=1
j (−1) j−1

α j−r , x = 1
n
∑n

j=1 x j and x2 = 1
n
∑n

j=1 x2
j . Therefore, the MMEs

of α and β are the simultaneous solutions of the two equations (9) and (10). From (9)
and (10), we obtain

β=
x

2α A1(α)
and

α=
x2

x2

A2(α)
A1(α)

.

Therefore, the MME ofα, say bαM M E , can be obtained by solving the equationα= x2

x2

A2(α)
A1(α)

with respect to α, numerically. Once bαM M E is obtained, the MME ofβ can be obtained
easily as

bβM M E =
x

2α A1(bαM M E )
.

Note that the MMEs exist only, when α > 2.
If the scale parameterβ is known, we takeβ= 1. In this case, the MME of α can be

obtained by solving the non-linear equation 2α A1(α) = x by some iterative methods.
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4. ESTIMATES BASED ON PERCENTILES

In this section, we estimate the unknown parameters by the percentile method. In
the percentile method, the unknown parameters are estimated by equating the sample
percentile points with the population percentile points. Kao (1959a,b) proposed this
method when the CDF is in a closed form. Some authors have used this method of esti-
mation, see for example Mann et al. (1974), Gupta and Kundu (2001), Kundu and Raqab
(2005) and Alkasabeh and Raqab (2009).

Here, we apply this method of estimation for the NP distribution. Since the CDF
of the NP distribution can be written in the closed form

F (x;α,β) = 1−
2 βα

xα+βα
,

we obtain

x =β
�

1+ F (x;α,β)
1− F (x;α,β)

�1/α

. (11)

If x1:n < · · · < xn:n is the sample order statistics and pi denotes some estimate of
F (xi :n ;α,β), then the Euclidean distance between the sample percentile and population
percentile is

E(α,β) =
n
∑

i=1

�

xi :n −β
�

1+ pi

1− pi

�1/α�2

. (12)

The PCEs of α and β are obtained by minimizing the Euclidean distance E(α,β) with
respect to α andβ. In this paper, we have used pi =

i
n+1 which is the unbiased estimate

of F (xi :n ;α,β). Therefore, the PCEs of α and β, say bαPC E and bβPC E , can be obtained
as the solution of the following equations

∂ E(α,β)
∂ α

=
2β
α2

n
∑

i=1

ln(
1+ pi

1− pi
) (

1+ pi

1− pi
)1/α

�

xi :n −β(
1+ pi

1− pi
)1/α

�

= 0 (13)

and
∂ E(α,β)
∂ β

=−2
n
∑

i=1

(
1+ pi

1− pi
)1/α

�

xi :n −β(
1+ pi

1− pi
)1/α

�

= 0. (14)

From (14), we obtain the PCE of β as a function of α as

bβ(α) =

∑n
i=1(

1+pi
1−pi
)1/α xi :n

∑n
i=1(

1+pi
1−pi
)2/α

.

Putting the value of bβ(α) in (13), bα can be obtained as a solution of the following equa-
tion
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h(α) =
n
∑

i=1

ln(
1+ pi

1− pi
) (

1+ pi

1− pi
)1/α xi :n

−

h

∑n
i=1(

1+pi
1−pi
)1/α xi :n

ih

∑n
i=1 ln( 1+pi

1−pi
) ( 1+pi

1−pi
)2/α

i

∑n
i=1(

1+pi
1−pi
)2/α

= 0.

Therefore, the PCE of α, say bαPC E , is derived by solving the equation h(α) = 0. Once,
bαPC E is derived, the PCE of β can be obtained as bβPC E = bβ(bαPC E ).

For known β, we assume β= 1. The PCE of α is obtained by minimizing

E(α) =
n
∑

i=1

�

xi :n −
�

1+ pi

1− pi

�1/α�2

(15)

with respect to α, where pi =
i

n+1 . Alternatively, the PCE of α can be obtained by
solving the equation

h(α) =
∂ E(α)
∂ α

=
2
α2

n
∑

i=1

ln(
1+ pi

1− pi
) (

1+ pi

1− pi
)1/α

�

xi :n − (
1+ pi

1− pi
)1/α

�

= 0. (16)

5. LEAST SQUARES AND WEIGHTED LEAST SQUARES ESTIMATES

The LSEs and WLSEs are used generally for estimation of parameters in linear models.
These estimates were used by Swain et al. (1988) to estimate the parameters of a beta
distribution. Recently, some authors have used the method of estimation in their work.
See, for example, Gupta and Kundu (2001), Kundu and Raqab (2005), Alkasabeh and
Raqab (2009) and Bakouch et al. (2017).

Let x1:n ≤ · · · ≤ xn:n be order statistics from a random sample of size n from a CDF
G(·). Since G(X j :n) behaves like the jth order statistic of a sample of size n from U (0,1),
we have

E[G(X j :n)] =
j

n+ 1
, Var[G(X j :n)] =

j (n− j + 1)
(n+ 1)2(n+ 2)

.

The LSEs are obtained by minimizing

n
∑

j=1

�

G(X j :n)−
j

n+ 1

�2

(17)

with respect to the unknown parameters of G(·). In case of the NP distribution, the
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LSEs of α and β, say bαLSE and bβLSE , can be obtained by minimizing

n
∑

j=1



1−
2 βα

xαj :n +β
α
−

j
n+ 1





2

(18)

with respect to α and β.
The WLSEs of the unknown parameters can be derived by minimizing

n
∑

j=1

w j

�

G(X j :n)−
j

n+ 1

�2

(19)

with respect to the unknown parameters, where

w j =
1

Var[G(X j :n)]
=
(n+ 1)2(n+ 2)

j (n− j + 1)
.

In case of the NP distribution, the WLSEs of α and β, say bαW LSE and bβW LSE , can be
obtained by minimizing

n
∑

j=1

w j



1−
2 βα

xαj :n +β
α
−

j
n+ 1





2

(20)

with respect to α and β.
For known β, let us fix β= 1. The LSE of α can be obtained by minimizing

n
∑

j=1



1− 2
xαj :n + 1

−
j

n+ 1





2

(21)

with respect to α. On the other hand, the WLSE of α can be obtained by minimizing

n
∑

j=1

w j



1− 2
xαj :n + 1

−
j

n+ 1





2

(22)

with respect to α.

6. METHOD OF MAXIMUM PRODUCT OF SPACINGS

Cheng and Amin (1979, 1983) introduced the MPS method as an alternative to MLE
for estimating the parameters of continuous distributions. They showed that the MPS
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method provides consistent and asymptotically efficient estimators in both the situa-
tions whether MLE exists or not. The MPS method of estimation was also developed
by Ranneby (1984) using the Kullback-Leibler measure of information.

Let x1:n ≤ · · · ≤ xn:n be order statistics from a random sample of size n from a CDF
G(x;α,β), where α andβ are unknown parameters. The i th spacing Di (α,β) is defined
as

Di (α,β) =G(xi :n ;α,β)−G(xi−1:n ;α,β), i = 1, . . . , n+ 1,

where G(x0:n ;α,β) = 0 and G(xn+1:n ;α,β) = 1. Clearly
∑n+1

i=1 Di (x;α,β) = 1.

The MPS estimators bαM P S and bβM P S of the parameters α and β are obtained by
maximizing the geometric mean of the spacings, i.e.,

G(α,β) =
�

n+1
∏

i=1

Di (α,β)
�

1
n+1

(23)

with respect to α and β or, equivalently, by maximizing the function

H (α,β) =
1

n+ 1

n+1
∑

i=1

log Di (α,β) (24)

with respect to α and β.
In case of the NP distribution, the MPSs of α andβ can be obtained by maximizing

H (α,β) =
1

n+ 1

n+1
∑

i=1

log

�

2 βα

xαi−1:n +β
α
−

2 βα

xαi :n +β
α

�

(25)

with respect to α andβ. If the scale parameter β is known and β= 1, then the MPS of
α can be obtained by maximizing

H (α) =
1

n+ 1

n+1
∑

i=1

log

�

2
xαi−1:n + 1

− 2
xαi :n + 1

�

(26)

with respect to α.

7. BAYES ESTIMATES AND CREDIBLE INTERVALS

In this section, Bayesian inference of the unknown parameters of the NP(α,β) distri-
bution is considered when both the parameters α and β are unknown. We obtain the
Bayes estimates and the associated credible intervals. We consider the following joint
prior PDF

π(α,β)∝ αγ βαb−1 c−α, α > 0, 0<β< d (27)
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for α and β, where γ , b , c , d are positive constants and d b < c . This prior was first
proposed by Lwin (1972) and later generalized by Arnold and Press (1983, 1989). Such
a prior specifies π(α) as a gamma distribution with parameters γ and log c− b log d and
π(β|α) as a power function distribution of the form

π(β|α)∝ b α βbα−1 d−bα, 0<β< d .

Note that the noninformative prior

π(α,β)∝ 1
αβ

, α > 0, β> 0

is specified by letting γ =−1, c = 1, b = 0 and d →∞.
Based on the observed sample, the joint posterior PDF of α and β becomes

π(α,β|x) = 1
R(x)

αn+γ βα(n+b )−1 c−α
n
∏

i=1

xα−1
i

(xαi +β
α)2

, α > 0, 0<β<M , (28)

where M =min(d , x(1)) and

R(x) =
∫ ∞

0

∫ M

0
αn+γ βα(n+b )−1 c−α

n
∏

i=1

xα−1
i

(xαi +β
α)2

dβ dα.

Therefore, the Bayes estimate of any function of α and β, say θ(α,β) under the SEL
function is

bθBayes = E[θ(α,β)|x] = 1
R(x)

∫ ∞

0

∫ M

0
θ(α,β) αn+γ βα(n+b )−1 c−α

n
∏

i=1

xα−1
i

(xαi +βα)2
dβ dα. (29)

Clearly, the Bayes estimates of α and β can not be obtained in explicit forms. Here, we
use an importance sampling method to compute the Bayes estimate and also to compute
the associated credible interval. To implement the importance sampling method, we
rewrite the posterior distribution (28) as

π(α,β|x) ∝ αn+γ−1 e−α
∑n

i=1 log xi α(n+ b ) βα(n+b )−1 M−α(n+b ) c−αM α(n+b )

×
n
∏

i=1

x2α−1
i

(xαi +β
α)2

.

Therefore, we have

π(α,β|x)∝Gα(n+ γ ,
n
∑

i=1

log xi ) P Fβ|α
�

α(n+ b ), M
�

h(α,β, x),

where G(n+γ ,
∑n

i=1 log xi ) is a gamma PDF with parameters n+γ and
∑n

i=1 log xi and
P F (β,α(n+ b ), M ) is the power function distribution with the CDF
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F (β) =
�

β

M

�α(n+b )

, 0<β<M ,

also

h(α,β, x) = c−α M α(n+b )
n
∏

i=1

x2α−1
i

(xαi +β
α)2

.

Now, we use the following algorithm to generate the samples from the posterior distri-
bution π(α,β|x) and also to compute the Bayes estimates:

Step 1. Generate (α1,β1) as: α1 ∼G(n+ γ ,
∑n

i=1 log xi ) and β1|α1 ∼ P F (α1(n+
b ), M ).

Step 2. Repeat Step 1 N times and obtain (α2,β2), . . . , (αN ,βN ).

Step 3. Compute h(αi , βi , x); i = 1, . . . ,N .

Step 4. Obtain the approximate Bayes estimates of α and β under the SEL func-
tion as

bαBS ≈
∑N

i=1αi h(αi ,βi , x)
∑N

i=1 h(αi ,βi , x)
(30)

and
bβBS ≈

∑N
i=1βi h(αi ,βi , x)
∑N

i=1 h(αi ,βi , x)
, (31)

respectively.

Next, we obtain the credible intervals of α andβ using the results in Chen and Shao
(1999). Let π(α,β|x) and Π(α,β|x) be the posterior PDF and posterior CDF of (α,β),
respectively, and let α(µ), be the µth quantile of α, i.e,

α(µ) = inf{α :Π(α,β|x)≥µ}, 0<µ< 1. (32)

For a given α∗, we have Π(α∗,β|x) = E{Iα≤α∗(α,β)|x}, where IA denotes the indicator
function such that IA(α) = 1 if A is true and IA(α) = 0 otherwise. Therefore, a simulation
consistent of Π(α∗,β|x) is

bΠ(α∗,β|x) =
1
N
∑n

i=1 Iαi≤α∗(α,β) h(αi ,βi , x)
1
N
∑N

i=1 h(αi ,βi , x)
. (33)

Let (α(i),β(i)) for i = 1, . . . ,N be the ordered values of (αi ,βi ), and

wi =
h(α(i),β(i), x)

∑N
i=1 h(α(i),β(i), x)
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be the associated weight, then we have

Π̂(α∗,β|x) =







0, i f α∗ <α(1),
∑i

j=1 w j , i f α(i) ≤ α∗ <α(i+1)
1, i f α∗ ≥ α(N ).

(34)

Therefore, we can approximate α(µ) as

α̂(µ) =
�

α(1), i f µ= 0,
α(i), i f

∑i−1
j=1 w j <µ≤

∑i
j=1 w j .

(35)

To obtain a 100(1− µ)% highest posterior density (HPD) credible interval for α,
consider intervals of the form

R j =
h

bα(
j

N ),bα(
j+[(1−µ)N ]

N )
i

(36)

for j = 1,2, . . . ,N − [(1−µ)N ], where [(1−µ)N ] denotes the largest integer less than
or equal to [(1−µ)N ]. Among all R j , j = 1, . . . ,N − [(1−µ)N ], choose the interval
which has the smallest length. The same procedure can be applied to calculate the HPD
interval for β.

Now we consider the Bayes estimate of α, when the scale parameter β is known.
Without generality, we takeβ= 1. We assume that α has the gamma prior distribution
with PDF

g (α)∝ αc−1 e−dα, α > 0, c , d > 0,

where the hyper parameters c and d are known and non-negative. The posterior PDF
of α given the data is

π(α|x)∝ αn+c−1 e−α(d+
∑n

i=1 log xi )
n
∏

i=1

x2α−1
i

(xαi + 1)2
,

which can be rewritten as

π(α|x)∝Gα(n+ c , d +
n
∑

i=1

log xi ) h(α, x),

where

h(α, x) =
n
∏

i=1

x2α−1
i

(xαi + 1)2
.

Again, we can apply the importance sampling scheme to generate samples from the pos-
terior distribution π(α|x) using the following algorithm:
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Step 1. Generate α1, . . . ,αN from G(n+ c , d +
∑n

i=1 log xi ).

Step 2. Obtain h(αi , x); i = 1, . . . ,N .

Step 3. Obtain the approximate Bayes estimate of α under SEL as

bαBS ≈
∑N

i=1αi h(αi , x)
∑N

i=1 h(αi , x)
. (37)

The credible interval of α can be obtained as described before.

8. INTERVAL ESTIMATES OF α FOR KNOWN β

Since the two-parameter NP distribution does not satisfy the standard regularity con-
ditions, it is not easy to obtain asymptotic confidence intervals of α and β. However,
when the scale parameter β is known, exact and asymptotic confidence intervals for α
can be constructed. Without loss of generality, we assume β= 1.

If x1, . . . , xn is a random sample from the NP(α, 1) distribution with the CDF

F (x;α) = 1− 2
xα+ 1

, x ≥ 1, α > 0,

then the pivotal quantity

Q(α) =−2
n
∑

i=1

ln[1− F (xi ;α)] =−2
n
∑

i=1

ln

�

2
xαi + 1

�

has the chi-square distribution with 2n degrees of freedom. So, a 100(1−γ )% confidence
interval for α can be constructed from the relation

P (χ 2
(2n,γ/2) <Q(α)<χ 2

(2n,1−γ/2)) = γ , (38)

where χ 2
(2n,γ/2) and χ 2

(2n,1−γ/2) are the lower and upper γ/2 percentage points of a chi-
square distribution with 2n degrees of freedom. Note that

dQ(α)
dα

= 2
n
∑

i=1

xαi ln xi

xαi + 1
> 0.

This implies that Q(α) is an increasing function in α. Therefore, an exact 100(1− γ )%
confidence interval for α based on the pivotal quantity Q(α) can be computed as

�

ϕ(x1, . . . , xn ,χ 2
(2n,α/2))<α < ϕ(x1, . . . , xn ,χ 2

(2n,1−α/2))
�

,

where ϕ(x1, . . . , xn , t ) is the solution of α for the equation Q(α) = t .
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From asymptotic normality of the MLE, an asymptotic confidence interval for α
can be constructed. If bα is the MLE of α, then according to Equation (7), the observed
Fisher information can be computed as

I (bα) =−
d 2 l (α)

dα2
|α=bα = 2

n
∑

i=1

xbαi log2 xi
�

1+ xbαi
�2 +

n
bα

. (39)

The variance of bα can be approximated by the inverse of the observed Fisher informa-
tion, i.e.,

ÓVar(bα) = I−1(bα).

Therefore, an asymptotic 100(1− γ )% confidence interval for α is

bα± z1−γ/2

q

ÓVar(bα),

where zq is the q -th upper percentile of the standard normal distribution.

9. SIMULATION RESULTS

To evaluate the performance of different estimation procedures developed in this pa-
per, a Monte Carlo simulation study is presented in this section. We compare the per-
formances of the different estimators in terms of their biases and mean squared errors
(MSEs) for different sample sizes and different parameter values. Since β is the scale
parameter, we takeβ= 1 in all cases considered. We consider α= 0.5, 1.0, 1.5, 2.0, 2.5
and n = 10,30,50,100. For computing Bayes estimates, we use two priors. The first is
the non-informative prior: γ =−1, b = 0, c = 1 and d →∞ and the second prior is the
informative prior γ = 0.001, b = 2, c = 5 and d = 2. We call the Bayes estimators under
the non-informative and informative priors as “BAYES I” and “BAYES II”, respectively.

9.1. Estimation of α and β when both are unknown

Let us consider estimation of α andβwhen both of them are unknown. In this case, the
MLE ofβ isβ= x(1). The MLE of α can be obtained by maximizing (5) or equivalently
computing the fixed point solution of (6). The MMEs can be computed by solving the
non-linear equations (9) and (10). The PCEs can be computed by minimizing (12) with
respect to α and β, or equivalently solving the non-linear equations (13) and (14). The
LSEs and WLSEs can be obtained by minimizing (18) and (20), respectively, with respect
to α and β. The MPS estimates can be obtained by minimizing (25) with respect to α
and β. The Bayes estimates can be obtained directly from (30) and (31). In this study,
the optim function in the R software was used for minimization problems. Also, the
function uniroot in R was used to solve the nonlinear equations.
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For given n, (α,β) and (γ , b , c , d ), we generated the random sample x1, . . . , xn from
the NP(α,β) distribution and then computed the estimates ofα andβ based on different
methods. Tables 2 and 3 present the average biases and MSEs based on 1000 replications.
The average biases and the MSEs decrease as sample size increases. This shows that all
estimates are asymptotically unbiased and consistent. The MPS and Bayes II estimates
provide the smallest MSEs. The MMEs have the largest biases whereas the PCEs have
the largest MSEs. The MSEs of the WLSEs are smaller than those of the LSEs. Also, the
Bayes estimates based on the informative prior perform better than the Bayes estimates
based on the non-informative prior, in terms of both biases and MSEs.

TABLE 2
MSEs and average biases (values in parentheses) of different estimates of α.

n Method α= 0.5, β= 1.0 α= 1.0, β= 1.0 α= 1.5, β= 1.0 α= 2.0, β= 1.0 α= 2.5, β= 1.0
MLE 0.053 (0.121) 0.212 (0.229) 0.482 (0.327) 0.788 (0.434) 1.289 (0.522)
MME - (-) - (-) - (-) - (-) 3.573 (1.417)
LSE 0.041 (0.018) 0.170 (0.032) 0.436 (0.069) 0.611 (0.052) 1.093 (0.087)
WLSE 0.038 (0.022) 0.169 (0.043) 0.364 (0.069) 0.566 (0.069) 1.038 (0.112)

10 PCE 0.082 (0.058) 0.441 (0.109) 0.672 (0.162) 1.715 (0.331) 2.588 (0.301)
MPS 0.025 (-0.002) 0.101 (-0.015) 0.242 (-0.038) 0.381 (-0.054) 0.661 (-0.080)
BAYES I 0.051 (0.106) 0.233 (0.248) 0.497 (0.362) 0.783 (0.455) 0.530 (-0.159)
BAYES II 0.015 (-0.014) 0.059 (-0.098) 0.126 (-0.215) 0.283 (-0.402) 0.524 (-0.616)
MLE 0.008 (0.036) 0.038 (0.076) 0.069 (0.086) 0.144 (0.131) 0.199 (0.152)
MME - (-) - (-) - (-) - (-) 0.953 (0.751)
LSE 0.009 (0.007) 0.043 (0.021) 0.083 (0.014) 0.160 (0.012) 0.226 (0.008)
WLSE 0.008 (0.012) 0.039 (0.034) 0.070 (0.026) 0.146 (0.041) 0.202 (0.040)

30 PCE 0.014 (0.013) 0.057 (0.028) 0.138 (0.047 ) 0.246 (0.074) 0.360 (0.067)
MPS 0.006 (-0.007) 0.027 (-0.012) 0.054 (-0.045) 0.108 (-0.043) 0.152 (-0.067)
BAYES I 0.008 (0.030) 0.035 (0.071) 0.077 (0.096) 0.139 (0.120) 0.165 (-0.049)
BAYES II 0.005 (-0.010) 0.022 ( -0.036) 0.051 (-0.083) 0.095 (-0.157) 0.165 (-0.242)
MLE 0.005 (0.025) 0.018 (0.046) 0.040 (0.060) 0.072 (0.083) 0.116 (0.120)
MME - (-) - (-) - (-) - (-) 0.696 (0.650)
LSE 0.005 (0.006) 0.022 (0.015) 0.048 (0.018) 0.086 (0.018) 0.133 (0.029)
WLSE 0.005 (0.012) 0.019 (0.024) 0.043 (0.033) 0.077 (0.039) 0.116 (0.059)

50 PCE 0.008 (0.008) 0.032 (0.010) 0.068 (0.013) 0.129 (0.036) 0.210 (0.052)
MPS 0.004 (-0.003) 0.014 (-0.009) 0.032 (-0.023) 0.059 (-0.028) 0.091 (-0.019)
BAYES I 0.004 (0.023) 0.017 (0.044) 0.041 (0.066) 0.070 (0.079) 0.100 (-0.070)
BAYES II 0.003 (-0.009) 0.015 (-0.024) 0.034 (-0.057) 0.063 (-0.093) 0.098 ( -0.164)
MLE 0.001 (0.009) 0.007 (0.018) 0.017 (0.024) 0.033 (0.046) 0.048 (0.045)
MME - (-) - (-) - (-) - (-) 0.364 (0.458)
LSE 0.002 (0.000) 0.010 (0.003) 0.022 (0.000) 0.043 (0.019) 0.060 (0.007)
WLSE 0.002 (0.005) 0.008 (0.009) 0.019 (0.010) 0.038 (0.034) 0.052 (0.025)

100 PCE 0.004 (-0.000) 0.017 (0.013) 0.037 (0.006) 0.067 (0.013) 0.110 (0.007)
MPS 0.001 (-0.005) 0.007 (-0.011) 0.016 (-0.020) 0.029 (-0.013) 0.043 (-0.029)
BAYES I 0.002 (0.012) 0.011 (0.023) 0.029 (0.023) 0.044 (0.043) 0.076 (-0.158)
BAYES II 0.002 (-0.027) 0.010 (-0.058) 0.025 (-0.082) 0.042 (-0.110) 0.067 (-0.165)

Sometime models can be misspecified. Figures 1 to 4 in Appendix A show the effect
of misspecification of the NP(α,β) distribution. We simulated 1000 random samples
each of size n from the NP(α+ ε,β+δ) distribution. We then computed the bias and
MSE of each estimator for each n assuming that the true distribution was NP(α,β). The
relative changes in the bias and MSE with respect to the not misspecified case are shown
in Figures 1 to 4. The biases and the MSEs for α do not appear to change a lot with
respect to misspecification. However, the biases and the MSEs forβ appear to change a
lot with respect to misspecification. The figures correspond to BAYES II estimators and
n = 10,30,50,100. But the results were similar for other estimators and other values of
n.
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TABLE 3
MSEs and average biases (values in parentheses) of different estimates of β.

n Method α= 0.5, β= 1.0 α= 1.0, β= 1.0 α= 1.5, β= 1.0 α= 2.0, β= 1.0 α= 2.5, β= 1.0
MLE 0.871 (0.538) 0.106 (0.213) 0.037 (0.137) 0.018 (0.098) 0.012 (0.077)
MME - (-) - (-) - (-) - (-) 0.108 (0.267)
LSE 0.475 (0.026) 0.108 (-0.014) 0.048 (0.000) 0.024 (-0.014) 0.018 (-0.005)
WLSE 0.418 (0.034) 0.090 (-0.001) 0.040 (0.008) 0.019 (-0.004) 0.015 (0.001)

10 PCE 0.462 (0.016) 0.052 (-0.017) 0.022 (-0.004) 0.011 (-0.007) 0.007 (-0.011)
MPS 0.288 (0.029) 0.046 (-0.011) 0.017 (-0.010) 0.009 (-0.011) 0.006 (-0.010)
BAYES I 0.706 (0.532) 0.121 (0.242) 0.047 (0.155) 0.025 (0.118) 0.008 (0.049)
BAYES II 0.181 (0.283) 0.063 (0.137) 0.019 (0.066) 0.012 (0.045) 0.007 (0.028)
MLE 0.048 (0.146) 0.010 (0.066) 0.004 (0.045) 0.002 (0.033) 0.001 (0.025)
MME - (-) - (-) - (-) - (-) 0.042 (0.175)
LSE 0.104 (0.020) 0.023 (-0.004) 0.010 (0.001) 0.005 (-0.005) 0.003 (-0.006)
WLSE 0.075 (0.035) 0.016 (0.008) 0.007 (0.009) 0.003 (0.003) 0.001 (0.000)

30 PCE 0.024 (-0.021) 0.005 (-0.010) 0.002 (-0.008) 0.001 (-0.005) 0.000 (-0.006)
MPS 0.021 (0.000) 0.005 (-0.003) 0.002 (-0.001) 0.001 (-0.001) 0.000 (-0.002)
BAYES I 0.051 (0.159) 0.013 (0.088) 0.005 (0.061) 0.003 (0.048) 0.001 (0.024)
BAYES II 0.039 (0.128) 0.008 (0.062) 0.003 (0.039) 0.001 (0.025) 0.001 (0.022)
MLE 0.015 (0.085) 0.003 (0.040) 0.001 (0.027) 0.000 (0.019) 0.000 (0.016)
MME - (-) - (-) - (-) - (-) 0.029 (0.148)
LSE 0.045 (-0.003) 0.012 (0.001) 0.005 (0.000) 0.002 (-0.003) 0.001 (-0.001)
WLSE 0.027 (0.015) 0.007 (0.010) 0.003 (0.007) 0.001 (0.002) 0.001 (0.003)

50 PCE 0.007 (-0.015) 0.001 (-0.010) 0.000 (-0.005) 0.000 (-0.005) 0.000 (-0.003)
MPS 0.007 (0.000) 0.001 (-0.000) 0.000 (-0.000) 0.000 (-0.001) 0.000 (-0.000)
BAYES I 0.019 (0.101) 0.005 (0.058) 0.002 (0.041) 0.001 (0.036) 0.000 (0.015)
BAYES II 0.014 (0.080) 0.003 (0.038) 0.001 (0.024) 0.000 (0.018) 0.000 (0.014)
MLE 0.003 (0.040) 0.000 (0.020) 0.000 (0.013) 0.000 (0.009) 0.000 (0.007)
MME - (-) - (-) - (-) - (-) 0.019 (0.120)
LSE 0.023 (0.004) 0.005 (-0.000) 0.002 (-0.000) 0.001 (0.000) 0.000 (0.000)
WLSE 0.012 (0.017) 0.002 (0.006) 0.001 (0.004) 0.000 (0.004) 0.000 (0.003)

100 PCE 0.001 (-0.012) 0.000 (-0.005) 0.000 (-0.002) 0.000 (-0.003) 0.000 (-0.002)
MPS 0.001 (-0.000) 0.000 (-0.000) 0.000 (-0.000) 0.000 (-0.000) 0.000 (-0.000)
BAYES I 0.004 (0.056) 0.001 (0.037) 0.001 (0.029) 0.000 (0.026) 0.000 (0.007)
BAYES II 0.003 (0.041) 0.000 (0.020) 0.000 (0.013) 0.000 (0.010) 0.000 (0.007)

9.2. Estimation of α when β is known

In this section, we consider estimation of α when β is known. The MLE of α can be
obtained by maximizing (7) with respect to α or equivalently by solving the solution (8).
The MME of α can be computed by solving the equation 2αA1(α) = x. The PCE can be
obtained by minimizing (15) with respect to α or equivalently by solving (16). The LSE
and WLSE of α can be obtained by minimizing (21) and (22), respectively, with respect
to α only. The MPS estimate can be obtained by minimizing (26) with respect to α. The
Bayes estimate can be obtained directly from (37). For Bayesian estimation, we used the
two priors d = c = 0 (non-informative) and c = 1, d = 4 (informative prior). Table 4
presents the average biases and MSEs based on 1000 replications.

From Table 4, again as sample size increases, the average biases and the MSEs de-
crease. The PCE and Bayes II have the smallest MSEs. The MME provides the largest
biases and MSEs.
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TABLE 4
MSEs and average biases (values in parentheses) of different estimates of α.

n Method α= 0.5 α= 1.0 α= 1.5 α= 2.0 α= 2.5
MLE 0.026 (0.046) 0.094 (0.086) 0.237 (0.133) 0.476 (0.179) 0.729 (0.203)
MME - (-) - (-) 0.281 (0.283) 0.469 (0.289) 0.680 (0.326)
LSE 0.045 (0.029) 0.128 (0.058) 0.324 (0.101) 0.601 (0.118) 0.871 (0.132)
WLSE 0.042 (0.026) 0.119 (0.052) 0.308 (0.090) 0.572 (0.108) 0.862 (0.126)

10 PCE 0.019 (-0.037) 0.076 (-0.076) 0.174 (-0.107) 0.292 (-0.139) 0.672 (-0.132)
MPS 0.020 (-0.007) 0.071 (-0.019) 0.182 (-0.023) 0.361 (-0.033) 0.566 (-0.060)
BAYES I 0.025 (0.042) 0.108 (0.072) 0.256 (0.101) 0.397 (0.147) 0.610 (0.168)
BAYES II 0.021 (0.033) 0.060 (-0.007) 0.102 (-0.101) 0.193 (-0.250) 0.316 (-0.092)
MLE 0.007 (0.014) 0.027 (0.030) 0.061 (0.042) 0.102 (0.035) 0.175 (0.089)
MME - (-) - (-) 0.086 (0.147) 0.129 (0.125) 0.180 (0.118)
LSE 0.009 (0.009) 0.033 (0.021) 0.075 (0.031) 0.130 (0.024) 0.235 (0.058)
WLSE 0.008 (0.009) 0.031 (0.019) 0.069 (0.029) 0.120 (0.019) 0.211 (0.057)

30 PCE 0.006 (-0.030) 0.027 (-0.051) 0.063 (-0.079) 0.116 (-0.087) 0.240 (-0.124)
MPS 0.006 (-0.009) 0.024 (-0.017) 0.055 (-0.028) 0.096 (-0.058) 0.152 (-0.029)
BAYES I 0.007 (0.011) 0.025 (0.008) 0.066 (0.035) 0.119 (0.035) 0.165 (0.056)
BAYES II 0.006 (0.007) 0.023 (-0.007) 0.054 (-0.043) 0.087 (-0.103) 0.134 (-0.025)
MLE 0.003 (0.006) 0.015 (0.015) 0.036 (0.041) 0.066 (0.043) 0.098 (0.050)
MME - (-) - (-) 0.060 (0.110) 0.085 (0.099) 0.115 (0.097)
LSE 0.004 (0.003) 0.019 (0.013) 0.046 (0.031) 0.087 (0.027) 0.133 (0.035)
WLSE 0.004 (0.003) 0.018 (0.011) 0.042 (0.030) 0.079 (0.028) 0.120 (0.035)

50 PCE 0.004 (-0.021) 0.016 (-0.039) 0.039 (-0.056) 0.066 ( -0.074) 1.488 (-0.089)
MPS 0.003 (-0.009) 0.014 (-0.017) 0.032 (-0.007) 0.061 (-0.020) 0.090 (-0.030)
BAYES I 0.004 (-0.000) 0.017 (-0.009) 0.037 (-0.008) 0.064 (0.002) 0.101 (-0.008)
BAYES II 0.003 (-0.006) 0.014 (-0.018) 0.034 (-0.049) 0.059 (-0.099) 0.069 (-0.078)
MLE 0.001 (0.004) 0.007 (0.013) 0.016 (0.009) 0.031 (0.030) 0.046 (0.014)
MME - (-) - (-) 0.031 (0.063) 0.045 (0.061) 0.053 (0.049)
LSE 0.002 (0.003) 0.010 (0.010) 0.021 (0.003) 0.040 (0.021) 0.059 (0.007)
WLSE 0.002 (0.003) 0.009 (0.010) 0.019 (0.003) 0.036 (0.023) 0.053 (0.008)

100 PCE 0.002 (-0.014) 0.008 (-0.024) 0.019 (-0.036) 0.032 (-0.049) 0.121 (-0.138)
MPS 0.001 (-0.004) 0.007 (-0.005) 0.015 (-0.018) 0.029 (-0.006) 0.045 (-0.031)
BAYES I 0.002 (-0.027) 0.010 (-0.050) 0.023 (-0.073) 0.043 (-0.097) 0.064 (-0.132)
BAYES II 0.002 (-0.029) 0.010 (-0.052) 0.023 (-0.082) 0.042 (-0.116) 0.047 (-0.161)

10. NUMERICAL EXAMPLES

In this section, we use some real data sets to illustrate the proposed estimation methods
discussed in the previous sections.

10.1. Example 1 (both parameters are unknown)

The real data set (see Table 5) represents the times to breakdown of a type of electronic
insulating material subjected to a constant-voltage stress. These data are taken from
Nelson (1970) and has been used earlier by Tiku and Akkaya (2004).

TABLE 5
Data set in Example 1.

0.35 0.59 0.96 0.99 1.69 1.97 2.07 2.58
2.71 2.90 3.67 3.99 5.35 13.77 25.50

An important characteristic to decide whether a particular distribution is suitable or
not for a data set is the empirical hazard rate function. Here, we use the scaled total time
on test (TTT) function to detect the type of the hazard rate function that the data have
and then choose a suitable distribution; see Aarset (1987). The TTT plot is obtained by
plotting
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T (
r
n
) =

r
∑

i=1
xi :n +(n− r ) xr :n

n
∑

i=1
xi :n

against r/n, where r = 1, . . . , n. It is a straight diagonal for constant hazard rates, convex
for decreasing hazard rates and concave for increasing hazard rates. It is first convex and
then concave if the hazard rate is bathtub-shaped. It is first concave and then convex
if the hazard rate is upside-down bathtub (unimodal) shaped. The TTT plot for the
above data set is presented in Figure 5. This plot indicates that the empirical hazard rate
function of the data set is decreasing. Therefore, the NP distribution is appropriate to
fit the data set since this distribution can present decreasing hazard rate functions.

First we compute the MLEs of the unknown parameters. The MLE of β is bβM L =
0.35. The MLE of α can be computed by maximizing the profile log-likelihood g (α)
in (5). The MLE of α is obtained as bαM L = 0.7403. The profile log-likelihood g (α) is
plotted in Figure 5. As we can see, it is a unimodal function. The Kolmogorov-Smirnov
(K-S) distances between the fitted and empirical CDFs was 0.25, and the corresponding
p-value was 0.22. Therefore, based on the MLEs, we can not reject the assumption that
the data set are coming from the NP distribution.

We also computed K-S distance based on MMEs, LSEs, WLSEs, PCEs, MPSs and
Bayes I estimates. Their estimates, K-S distances and the corresponding p-values are
given in Table 6. From this table, all considered estimates provide a satisfactory to the
data set. Table 7 presents 95% credible intervals.

Figure 6 plots the empirical CDF and histogram. Superimposed are the fitted CDFs
and PDFs of the parameter estimates under consideration. These plots confirm the re-
sults in Table 6.

TABLE 6
Estimates, K-S distances and corresponding p-values based on different estimates for Example 1.

Estimation method MLEs MMEs LSEs WLSEs PCEs MPSs BAYES I
bα 0.740 2.399 0.935 0.935 0.478 0.646 0.649
bβ 0.350 1.699 0.682 0.671 0.279 0.293 0.275
K-S 0.258 0.333 0.133 0.140 0.258 0.245 0.262
p-value 0.227 0.054 0.918 0.889 0.224 0.277 0.212

TABLE 7
95% credible intervals of the parameters.

Parameter α β
Credible interval [1.329, 2.507] [0.985, 1.012]
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10.2. Example 2 (β is known)

Dyer (1981) reported annual wage data (in multiplies of 100 US dollars) of a random
sample of 30 production-line workers in a large industrial firm, as presented in Table
8. He showed that the Pareto distribution provided an adequate fit for this data set.
Here we fit the NP distribution to this data set. We observed that the NP distribution
with α = 8.1261 and β = 101 fits to above data set. We checked the validity of the NP
distribution based on the K-S test. The K-S distance was 0.09 and the corresponding
p-value was 0.95. Let us transform this data set to the standard NP distribution with
the scale parameter β = 1. We know that if the random variable X follows NP(α,β),
then the random variable Z = X /β has the standard NP(α, 1) distribution. Therefore,
we transform the above data to NP(α, 1) by dividing byβ. The transformed data set are
reported in Table 8.

We fitted the standard NP(α, 1) distribution to the transformed data set. We com-
puted the MLE, MME, LSE, WLSE, PCE, MPS and Bayes I estimates of α as described
in Section 2. We also computed K-S distance based on these estimates. The estimates,
K-S distances and the corresponding p-values are presented in Table 9. The results in Ta-
ble 9 show that the standard NP(α, 1)model is fitted reasonably well to the transformed
data set and all the estimates provide satisfactory fits. Table 10 presents 95% exact and
asymptotic confidence intervals and also the 95% credible interval for α.

Figure 7 plots the empirical CDF and histogram. Superimposed are the fitted CDFs
and PDFs of the parameter estimates under consideration. This figure supports the
results in Table 9.

TABLE 8
The annual wage data.

Data Set 112 154 119 108 112 156 123 103
115 107 125 119 128 132 107 151
103 104 116 140 108 105 158 104
119 111 101 157 112 115

Transformed data 1.108 1.524 1.178 1.069 1.108 1.544 1.217 1.019
1.138 1.059 1.237 1.178 1.267 1.306 1.059 1.495
1.019 1.029 1.148 1.386 1.069 1.039 1.564 1.029
1.178 1.099 1.000 1.554 1.108 1.138

TABLE 9
Estimates, K-S distances and corresponding p-values based on different estimates for Example 2.

Estimation method MLEs MMEs LSEs WLSEs PCEs MPSs BAYES I
bα 8.126 8.244 8.328 8.213 7.745 6.491 7.683
K-S 0.093 0.096 0.098 0.095 0.105 0.179 0.108
p-value 0.956 0.942 0.931 0.946 0.894 0.288 0.871



Comparisons of Methods of Estimation for a New Pareto-Type Distribution 311

TABLE 10
95% intervals of α based on the annual wage data.

Exact confidence interval Asymptotic confidence interval Credible interval
[5.887,10.773] [5.971,10.280] [6.117,9.844]

11. CONCLUSIONS

We have compared eight methods to estimate parameters of a new Pareto distribution
due to Bourguignon et al. (2016). Six of these are frequentist methods: maximum likeli-
hood estimators, method of moment estimators, percentile estimators, least square and
weighted least square estimators and maximum product of spacing estimators. The re-
maining two are Bayes estimators based on informative and non-informative priors. The
performance of the estimators was assessed by a simulation study and two real data ap-
plications. The maximum product of spacing estimators and Bayes estimators based on
informative priors were shown to provide the best performance when both parameters
of the distribution are unknown. The percentile estimators and Bayes estimators based
on informative priors were shown to provide the best performance when the scale pa-
rameter of the distribution is known. A future work is to derive multivariate, matrix
variate and complex variate extensions of the distribution and to study their estimation
issues.
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APPENDIX

A. FIGURES
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Figure 1 – Contours of the relative percentage changes in the bias of the estimator of α (top left),
the MSE of the estimator of α (top right), the bias of the estimator ofβ (bottom left) and the MSE
of the estimator of β (bottom right) when n = 10.
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Figure 2 – Contours of the relative percentage changes in the bias of the estimator of α (top left),
the MSE of the estimator of α (top right), the bias of the estimator ofβ (bottom left) and the MSE
of the estimator of β (bottom right) when n = 30.
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Figure 3 – Contours of the relative percentage changes in the bias of the estimator of α (top left),
the MSE of the estimator of α (top right), the bias of the estimator ofβ (bottom left) and the MSE
of the estimator of β (bottom right) when n = 50.
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Figure 4 – Contours of the relative percentage changes in the bias of the estimator of α (top left),
the MSE of the estimator of α (top right), the bias of the estimator ofβ (bottom left) and the MSE
of the estimator of β (bottom right) when n = 100.
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Figure 6 – The empirical CDF and histogram with the fitted CDFs and PDFs.
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Figure 7 – The empirical CDF and histogram with the fitted CDFs and PDFs.
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SUMMARY

Bourguignon et al. (2016) introduced a new Pareto-type distribution to model income and reli-
ability data. The aim of this paper is to estimate the parameters of this distribution from both
frequentist and Bayesian view points. The maximum likelihood estimates, method of moment
estimates, percentile estimates, least square and weighted least square estimates and maximum
product of spacing estimates are considered as frequentist estimates. We have also considered the
Bayes estimates of the unknown parameters and the associated credible intervals. The Bayes esti-
mates are computed using an importance sampling method. To evaluate the performance of the
different estimates, a Monte Carlo simulation study is carried out. Some real life data sets have
been analyzed for illustrative purposes.

Keywords: Bayesian estimates; Least squares estimates; Maximum likelihood estimates; Method
of moment estimates; Monte Carlo simulation; Percentiles estimates; Weighted least squares esti-
mates.


