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TRANSFORM METHODS FOR TESTING 
THE NEGATIVE BINOMIAL HYPOTHESIS 

Simos G. Meintanis 

1. INTRODUCTION

The negative binomial distribution (NBD) is one of the most popular models 
for overdispersed data, i.e. for data under which, contrary to the Poisson assump-
tion, the variance exceeds the corresponding mean. Therefore testing the null hy-
pothesis that the data at hand follow the NBD is of considerable interest. Some 
standard procedures for testing goodness-of-fit based on the cumulative distribu-
tion function (CDF), have been extended to also include discrete models. For the 
Poisson distribution, Székely and Rizzo (2004) and Gürtler and Henze (2000) 
studied the finite-sample performance of the Kolmogorov-Smirnov and the Cra-
mér-von Mises test, in comparison to new tests based on the probability generat-
ing function (PGF), and found that the latter tests compare favorably to tests ba-
sed on the CDF. In addition, since for many discrete models, the PGF, unlike the 
CDF, can be written in closed form, the PGF-tests present a computationally 
more convenient solution for goodness-of-fit testing. The only PGF-test for the 
NBD was proposed by Rueda and O’Reilly (1999), where however the corre-
sponding test statistic appears to be computationally complex, and at least one 
parameter is assumed to be known. Here we propose a computationally simple 
goodness-of -fit test for the NBD and generalize the approach of Rueda and 
O’Reilly (1999), in that both parameters of the NBD are assumed unknown. As 
an additional motivation for adapting the PGF-techniques in the present situation 
is an exchange of ideas with N.C. Weber, including a privately communicated 
manuscript by Binnie and Weber (2003). 

Assume 0X  is a non-degenerate (discrete) random variable and let 

( ) E( )XP s s , 0 1s , be the corresponding probability generating function 
(PGF). If X  has a negative binomial distribution with parameters 0 ,

(0,1)p , i.e. if 

( )
P( )  (1 ) ,   0,1, 2,...,

( ) !
xx
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then its PGF is given by ( ) [1 (1 )]s s , where (1 )/p p . Hence, 
subject to the condition (1) 1P , ( )s  is the unique solution of the differential 
equation

[1 (1 )] '( ) ( ) 0s P s P s , (1) 

with 0  and E( ) 0X . On the basis of independent observations 

1 2, , ..., nX X X  on the random variable X , we wish to test the null hypothesis, 

0 :  follows a NBD for some , 0H X .

Our test procedure employs (1) with ( )P s  replaced by the empirical PGF 

1

1
( ) j

n
X

n
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P s s
n

,

and ( , )  replaced by the moment estimator ˆ( , )n nX , where 
2ˆ ( )/n n n nS X X , with 1

1

n

n jj
X n X , and 2 1 2 2

1
( )

n

n j nj
S n X X ,

denoting the sample mean and sample variance, respectively. In particular let 
ˆ( ) [1 (1 )] ' ( ) ( )n n n n nD s s P s X P s . The test rejects 0H  for large values of 

,n aT  where, 

1
2

,
0

( ) a
n a nT n D s s ds ,  (2) 

0a  being a parameter the role of which we discuss later. From (2) straightfor-
ward calculations yield 

2
,
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ˆ ˆ
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[ ( ) 2 {(1 ) ( 1) ( )}
n n

n a n jk n j n jk n jk

j k j k

T X I X a X X I X a I X a
n

2 2

, 1
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with jk j kX X X ,
1 1

0
( ) (1 )I s ds , 1  and 1a . Obviously 

this expression is appropriate for computational purposes. 

2. THEORETICAL RESULTS

From (2) and letting exp( )s t , the test statistic may be written as 
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2
,

0

( ) at
n a nT t e dt ,    with

1

ˆ
1

( ) ( , , ; )
n

n j n n

j

t X X t
n

 (3) 

where 

( 1)( , , ; ) {1 (1 )}   t tX t XX t e X e e .

Representation (3) puts the test statistic in the framework of testing goodness-of-
fit by the empirical Laplace transform, for which the technical details have been 
sufficiently explored. See for example, Henze and Meintanis (2002), and Mein-
tanis and Iliopoulos (2003). Therefore most of the arguments will only be 
sketched.

We first show that the family of test statistics ,{ ,0 }n aT a , is closed at the 

boundary a . Specifically from (3) and letting 2( ) ( )ng t t  a Taylor expan-
sion yields 

4____ ____
3 2 2 4ˆ ˆ( ) [ (2 ) ( 2 1) ] ( )

4n n n n n n n

t
g t n X X X X X o t ,

where 
____

1
1

nk k
n jj

X n X , 2,3k . An Abelian theorem for Laplace transforms 

(Zayed, 1996, Section 5.11) yields 

____ ____
5 3 2 2

,
ˆ ˆlim 6 [ (2 ) ( 2 1) ]n a n n n n n n n

a
a T n X X X X X .

Therefore as a , the test statistic when suitable rescaled approaches a 
limit value. Notice that under 

0
H , the stochastic limit of 

____ ____
3 2ˆ ˆ(2 ) ( 2 1)n n n n n n nX X X X X  is equal to zero. Kyriakoussis et al.

(1998) arrived at a somewhat similar moment-based test statistic via a characteri-
zation of the NBD. Their statistic apart from being straightforward to compute, 
and although it has a simple limiting normal distribution, assumes the value of the 
parameter  to be a known integer, and is consistent only within the family of 
power-series distributions. In the following theorem the asymptotic null distribu-
tion of ,n aT  is derived. 

Theorem 1. Assume that X  has a NBD with parameters 0  and 0 . Then, 
there is a zero-mean Gaussian element  having covariance kernel 

( , ) E ( ) ( )K s t s t , such that, for the process ( )n  defined in (3), D

n

as n . Moreover, 
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2 2
,

0 0

( ) ( )Dat at
n a nT t e dt t e dt , as n .

Proof. The main idea of the proof is to successively approximate the process ( )n

by asymptotically equivalent processes * ( )n  and ( )n , with the last process ad-
mitting the representation 

0 0
1

1
( ) ( , , ; )

n

n j

j

t X t
n

,

where 1( ,  ,  ; )X t , 2( ,  ,  ; )X t ,..., are independent and identically distributed 

random variables, satisfying E( ) 0  and 2E( ) . To this end, a Taylor ex-

pansion of ˆ( , , ; )n nX t  around the true values yields 

*
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1 1
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By invoking the law of large numbers it follows that the last process is asymptoti-

cally equivalent to the process resulting from * ( )n  with 1
1

jn tX

j
n e  replaced 

by E( )tXe  and 1
1

jn tX

j
n e replaced by E( )tXXe .

Now recall that the moment estimator of  is given by 2ˆ ( , )n n ng S X , where 

( , ) ( / ) 1g x y x y . Expanding 2( , )n ng S X  around the true values 2
0  and 0 ,

and utilizing the asymptotic equivalence of 2
nS  to 1 2

01
( )

n

jj
n X  we arrive 

at ( )n t  with 

1 2 2
0 0 0 0 0 0 0( , , ; ) ( , , ; ) [(1 ) E( )][( ) ]t tX

j j jX t X t e Xe X

                        
2
0

02
0

[(1 ) E( ) E( )]( )t tX t tX
je Xe e e X .

An application of the central limit theorem and the continuous mapping theorem 
concludes the proof. 

The following result implies the consistency of the goodness-of-fit test that re-
jects 0H  for large values of ,n aT  against general alternatives. 



Transform methods for testing the negative binomial hypothesis 297

Theorem 2. Let 0X  be a nondegenerate random variable with mean . In 

addition assume that ˆ 0n , almost surely. Then 

,lim inf  0n a

n

T

n
, (4) 

almost surely. 

Proof. Starting with (3) we have that 

, 2

0

( ) n a at
n

T
D t e dt

n
,

where 1/2( ) ( )n nD t n t . By the strong law of large numbers it follows that 

( ) ( )nD t D t , almost surely, with ( ) [1 (1 )]E( ) E( )t tX t tXD t e Xe e e .
Hence by Fatou’s lemma, 

, 2

0

lim inf : ( ) n a at
a

n

T
D t e dt

n
,

almost surely, which finishes the proof of the theorem. 
It may be easily seen from (1), that a  is positive unless X  follows a NBD 

with PGF equal to ( )s . Consequently, a level -test that rejects 0H  for large 

values of ,n aT  is consistent against each fixed alternative distribution satisfying 

the conditions of Theorem 2. Unfortunately, and since a  is a decreasing func-
tion of a , there is no way of choosing a “good” value of a  based on Theorem 2. 
Therefore the choice for this parameter has to be made on the basis of finite-
sample results. Also, notice that a  when the second moment of the under-
lying distribution is infinite. Therefore the test that rejects the null hypothesis for 
large values of ,n aT  is consistent even against models with infinite variance. 

3. SIMULATION RESULTS

This section presents the results of a Monte Carlo study conducted at a 10% 
nominal level with sample size 100n . Our procedure rejects the null hypothe-
sis either when the value of the test statistic exceeds the critical point, or when 
the estimates of the parameters lie outside the parameter space (0, ) (0,1)  for 
( , )p .

Since the null distribution of the test statistic depends on the (unknown) values 
of the parameters ( , )p  we perform a parametric bootstrap to obtain the critical 
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point of the test as follows: Conditionally on the observed value of ˆ ˆ( , )n np , gen-

erate B =200 bootstrap samples from NBD ˆ ˆ( , )n np . Calculate the value of the 

test statistic, say *
jT , (j=1,2,..., B ), for each bootstrap sample. Obtain the critical 

point as * *
(0.90 ) (180)BT T , where *

( )jT , j=1,2,..., B , denote the ordered *
jT -values. 

The parametric bootstrap is a well established technique, both on theoretical and 
empirical grounds. For instance it is known (Henze, 1996) that as ,n B , the 
distribution of the bootstrap statistic converges to the asymptotic distribution of 

,n aT . For further theoretical justification of the parametric bootstrap the reader is 

referred to Stute et al. (1993), Henze (1996) and Babu and Rao (2004). Extensive 
finite-sample results are provided by Gürtler and Henze (2000), Garren et al. 
(2001), and Székely and Rizzo (2004). 

It should be noted here that typically, in cases of goodness-of-fit for families 
involving one or more unknown shape parameters, the asymptotic distribution of 
the test statistic depends on the true value(s) of these parameters (Henze, 1996 
and Székely and Rizzo, 2004). Moreover, the asymptotic distribution of these sta-
tistics is highly non-standard, and therefore calculation of percentage points is by 
no means a trivial issue. This disadvantage is shared by both, classical CDF tests 
as well as recently developed PGF tests. However even when these percentage 
points have been calculated, and assuming a large sample size, the practitioner 
needs to employ detailed look-up tables, each table being appropriate for a single 
combination of true-parameter value(s), and interpolate in that table using the 
current estimate(s) of the parameter value(s). Therefore, and as described above, 
the parametric bootstrap, despite the fact that it is computationally intensive, it is 
otherwise easily programmed in a computer, and provides a method that avoids 
the use of look-up tables, as well as reliance on doubtful asymptotic critical val-
ues.

In Table 1 and Table 2, the percentage of rejection of 0H  in 1000 replications 
is shown rounded to the nearest integer. The distributions considered are: 

1) Negative binomial distributions with parameters  and p

2) Two-component mixtures of Poisson distributions denoted by MP( , )p ,
where X ~ P(1)  or X ~ P( ) , with probability p  and (1 )p , respectively 

3) Two-component mixtures of NBD, where X ~ NBD(1,0.25)  or 
X ~ NBD( , )p , each with probability 0.50, denoted by MNB( , )p

From the figures in Tables 1 and 2 we may infer that the bootstrap version of 

,n aT  recovers the nominal level of significance to a satisfactory degree, and exhib-

its significant power against some popular alternatives to the NBD. Also, despite 
the fact that ,n aT  is seen to be fairly robust with respect to the parameter a , it 

appears that a “moderate” value of a , say 5a , is preferable. 
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TABLE 1 

Empirical level for ,n aT  in 1000 samples of size 100n  at 10% nominal level 

DISTRIBUTION 2a 3a 5a 10a

1, 0.25p 12 12 12 13 

1, 0.50p 11 11 10 9 

1, 0.75p 13 13 11 11 

2, 0.25p 11 10 11 12 

2, 0.50p 11 11 12 12 

2, 0.75p 14 14 13 12 

4, 0.25p 11 11 11 11 

4, 0.50p 11 10 10 9 

4, 0.75p 13 13 12 12 

5, 0.25p 10 10 10 10 

5, 0.50p 11 11 10 11 

5, 0.75p 14 13 12 11 

10, 0.25p 10 10 10 10 

10, 0.50p 9 9 10 10 

10, 0.75p 13 13 11 11 

TABLE 2 

Empirical power for ,n aT  in 1000 samples of size 100n  at 10% nominal level 

DISTRIBUTION 2a 3a 5a 10a

MP(2,0.25) 33 34 34 33 

MP(2,0.50) 24 25 24 25 

MP(2,0.75) 31 31 30 30 

MP(3,0.25) 23 24 24 24 

MP(3,0.50) 14 14 14 14 

MP(3,0.75) 12 11 11 10 

MP(4,0.25) 55 56 57 56 

MP(4,0.50) 36 38 41 43 

MP(4,0.75) 9 8 10 6 

MP(5,0.25) 89 89 90 89 

MP(5,0.50) 58 62 67 71 

MP(5,0.75) 8 6 9 7 

MP(10,0.25) 100 100 100 100 

MP(10,0.50) 100 100 100 100 

MP(10,0.75) 29 32 36 43 

MNB(3,0.25) 11 11 10 9 

MNB(3,0.50) 37 37 38 38 

MNB(3,0.75) 95 96 95 94 

MNB(4,0.25) 14 14 13 12 

MNB(4,0.50) 66 66 65 62 

MNB(4,0.75) 100 100 100 100 
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RIASSUNTO

Metodi basati su trasformate per saggiare l’ipotesi di distribuzione Binomiale Negativa 

La funzione generatrice di probabilità empirica è utilizzata per costruire test di adatta-
mento a distribuzioni Binomiali Negative. Si mostra che i test proposti, formulati come 
integrali ponderati, sono consistenti e si studia la loro distribuzione asintotica per specifi-
cate ipotesi nulle. Valori limite delle statistiche test sono valutati al tendere a zero della 
funzione ponderante. È infine presentato uno studio di simulazione. 

SUMMARY

Transform methods for testing the negative binomial hypothesis 

We employ the empirical probability generating function in constructing a goodness-
of-fit test for negative binomial distributions. The proposed tests, which are formed as 
weighted integrals, are shown to be consistent and their asymptotic null distribution is 
investigated. As the decay of the weight function tends to infinity, limit statistics are ob-
tained. A small simulation study is presented. 


