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AVERAGE LINEAR APPROXIMATIONS FOR SMOOTH FUNCTIONS 

Andrea Pallini 

1. INTRODUCTION

Smooth functions g  are continuous functions admitting an appropriate num-

ber of bounded and continuous derivatives. Feller (1971), chapter 7, provides an 
elegant exposition of select topics in approximation theory for continuous func-
tions, focussing on Bernstein polynomials and uniform approximation in the 
sense of Weierstrass. See also Davis (1963), chapter 6, Cheney (1982), chapter 3, 
Cheney (1986), chapter 1, Lorentz (1986), Beckner and Regev (1998), and Pinkus 
(2000). Bernstein polynomials are positive linear operators defined with Binomial 
probabilities. Bernstein polynomials converge uniformly to a continuous function 
of interest. Binomial probabilities in Bernstein polynomials work as a weighting 
scheme, and asymptotics for these linear operators can be studied by Tchebychev 
inequalities. On the other hand, with inferential paradigms, Bernstein polynomials 
are not generally applicable to random samples drawn from a population distribu-
tion F . More precisely, Binomial probabilities in Bernstein polynomials have al-
ways to play some role in linking the population distribution F  with a smooth 
function g  to approximate. 

Alternative approximating linear operators that converge uniformly to a 
smooth function g  can be introduced following Pallini (2000, 2002). These ap-

proximating linear operators are defined as sums of n  smooth functions of the 
same analytic form as the smooth function g  to approximate, calculated on n

independent and identically distributed (i.i.d.) random observations with popula-
tion distribution F . These approximating linear operators for smooth functions 
g  are positive and can use various probability models for their weighting 

schemes. Following the terminology in Bogachev (2000), these approximating 
linear operators can be named average linear approximations. The weighting 
schemes in the proposed average linear approximations do not depend on the 
population distribution F .

In section 2, we introduce average linear approximations for smooth functions 
g , with empirical probabilities that define their weighting schemes. These aver-

age linear approximations have errors in probability of order ( )s
pO n  and 
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2( )s
pO n , where 0s  is a finite constant, as the sample size n  diverges, as 

n . In section 3, we introduce average linear approximations using Gaussian 

probabilities, with errors in probability of order ( )s
pO n  and 2( )s

pO n , where 

0s  is a constant, as n . In section 4, we study convergence of these aver-
age linear approximations, as n , in the sense of the Weierstrass approxima-
tion theorem. We show that their convergence is uniform, as n , with 
straightforward applications of Tchebychev inequalities to the empirical and 
Gaussian probabilities that define their weighting schemes. In section 5, we study 
the average linear approximations of sections 2 and 3 with situations that require 
a prearranged error function. In section 6, we will conclude the present contribu-
tion with some general remarks. 

2. AVERAGE LINEAR APPROXIMATIONS

Let 1{X , , X }n n  be a random sample of n  i.i.d. observations drawn from 

a q -variate random variable X , taking values in a space  with population dis-

tribution F . Let g  be a real-valued smooth function of u , where u qV .

That is, 1:g V . Let us suppose that the smooth function g  satisfies the 

conditions in appendix (7.1). We want to approximate the values g(u)  of the 

smooth function g  on a closed subset U  of V , where u U  and U V , by 

average linear approximations defined on the space U .
Smooth function g  can also be studied by a random variable X  of lower di-

mension 0q , say 0q q , following, for instance, the asymptotic statistical theory 

for the class of smooth functions of means. See Bhattacharya and Ghosh (1978), 
Hall (1992), chapters 2 and 3, and Pallini (2000, 2002). 

For any finite constant 0s , we can define the average linear approximation 

[ (u)]nL g  of the values (u)g  of a smooth function g , where u U , with an er-

ror in probability of order ( )s
pO n , as n . Assigning the empirical probabil-

ity 1n  to every random observation 
1i

X  in the sample n , where 1 1, ,i n ,

we can define the average linear approximation [ (u)]nL g  as 

1

1

1
i

1

[ (u)] ( X u)
n

s
n

i

L g n g n , (1) 

where u U . Observe that 
1i

( X u)s
n V , for every 1 1, ,i n . Similarly, for 

any finite constant 0s , we can define the average linear approximations 

[ (u)]nM g  and [ (u)]nN g , where u U , with errors in probability of order 
2( )s

pO n , as n . In particular, we have the definitions 
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1 2

1 2

2
i i

1 1

[ (u)] ( (X X ) u)
n n

s
n

i i

M g n g n , (2) 

1 2

1 2 2 1 2

2q-1 2q

(1) (1) (1)
i i

2

1 1 1 1 (q) (q) (q)
i i

(X X ) u

[ (u)]

(X X ) u
q q

s

n n n n
q

n

i i i i s

n

N g n g

n

, (3) 

where u U .

The average linear approximation [ (u)]nM g  uses all differences between 

the pairs 
1 2i i(X , X )  of the sample observations in n , where u U , and 

1 2, 1, ,i i n . The average linear approximation [ (u)]nN g  uses all differences 

between the pairs 1 1

1 2

(t ) (t )
i i(X , X )  of the sample observations in n , where u U ,

1 1, ,t q , and 1 2, 1, ,i i n . Use of pairs in [ (u)]nM g  and [ (u)]nN g  im-

proves over the error in probability achievable with the average linear approxima-

tion [ (u)]nL g , for all u U .

Errors in probability for average linear approximations [ (u)]nL g , [ (u)]nM g

and [ (u)]nN g , where u U , depends on the finite constant 0s , and can be 

very low. The constant s  in definitions (1), (2) and (3) can be used for tuning up 

the randomness that originates from the sample n . In appendix (7.2), for all 

u U , it is shown that 

[ (u)] (u) ( )s
n pL g g O n ,  (4) 

2[ (u)] (u) ( )s
n pM g g O n , (5) 

2[ (u)] (u) ( )s
n pN g g O n , (6) 

as n , for every choice of the constant s , where 0s . Observe that, for a 

fixed s , where 0s , the average linear approximations [ (u)]nM g  and [ (u)]nN g

perform better than the average linear approximation [ (u)]nL g , for all u U , as 

n .

3. AVERAGE LINEAR APPROXIMATIONS USING GAUSSIAN PROBABILITIES

We denote by  the multivariate Gaussian probability on q , obtained as the 

product of q  standard Gaussian probabilities on 1 . For any finite constant 



A. Pallini 274

0s , we can define the average linear approximation [ (u); ]nL g , for the values 

g(u)  of a smooth function g , where u U , with an error in probability of order 

( )s
pO n , as n . Assigning the probability 

1 1

1

1

i i
1

( X ) ( X )
n

s s

i

n n ,

to every random observation 
1i

X  in the sample n , where 1 1, ,i n , we can 

define the average linear approximation [ (u); ]nL g  as 

1 1 1

1 1

1

i i i
1 1

( )[ (u); ] ( X ) ( X u) X
n n

s s s
n

i i

L g n g n n , (7) 

where u U . Similarly, for any finite constant 0s , we can define the average 

linear approximations [ (u); ]nM g and [ (u); ]nN g , where u U , with errors 

in probability of order 2( )s
pO n , as n . In particular, we have the definitions 

1 2

1 2

1

i i
1 1

[ (u); ] ( (X X ))
n n

s
n

i i

M g n

1 2 1 2

1 2

i i i i
1 1

( (X X ) u) ( (X X ))
n n

s s

i i

g n n , (8) 

1 2 2q-1 2q

1 2 2 1 2

1

(1) (1) (q) (q)
i i i i

1 1 1 1

( )[ (u); ] (X X ) ( (X X ))
q q

n n n n
s s

n

i i i i

N g n n

1 2

1 2 2 1 2

2q 2q-1

(1) (1) (1)
i i

1 1 1 1 (q) (q) (q)
i i

(X X ) u

(X X ) u
q q

s

n n n n

i i i i s

n

g

n

1 2 2q-1 2q

(1) (1) (q) (q)
i i i i( (X X )) ( (X X ))s s

n n , (9) 

where u U .

Errors in probability for the average linear approximations [ (u); ]nL g ,

[ (u); ]nM g  and [ (u); ]nN g , where u U , can be very low. More precisely, in 

appendix (7.3), for all u U , it is shown that 
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[ (u); ]-g(u) ( )s
n pL g O n , (10) 

2[ (u); ]-g(u) ( )s
n pM g O n , (11) 

2[ (u); ]-g(u) ( )s
n pN g O n , (12) 

as n , for every s , where 0s .
Following appendix (7.3), it is seen that the average linear approximations 

[ (u)]nL g  and [ (u); ]nL g , given by (1) and (7), [ (u)]nM g  and [ (u); ]nM g ,

given by (2) and (8), and [ (u)]nN g  and [ (u); ]nN g , given by (3) and (9), have 

the same asymptotic variance, for all u U , as n . To go into some detail, 

about the average linear approximations [ (u)]nL g  and [ (u); ]nL g , we have that 

2 2(u) [{ [ (u)]-g(u)} ]nE L g

2[{ [ (u); ]-g(u)} ]nE L g ,

as n , for all u U . In any case, the average linear approximations 

[ (u)]nL g , [ (u)]nM g , [ (u)]nN g , [ (u); ]nL g , [ (u); ]nM g  and [ (u); ]nN g , de-

fined in (1), (2), (3), (7), (8) and (9), may perform differently, whereas the sample 
size n  is finite. See subsection (5.3) below. 

4. UNIFORM APPROXIMATION

The convergence of the average linear approximations [ (u)]nL g , [ (u)]nM g

and [ (u)]nN g  to the value g(u)  of a smooth function g  is uniform, for all 

u U . The rates of convergence in (4), (5) and (6) do not depend on u , for all 
u U . In appendix (7.4), it is shown that 

[ (u)] [ (u)]nL g g , (13) 

[ (u)] [ (u)]nM g g , (14) 

[ (u)] [ (u)]nN g g , (15) 

uniformly on u U , as n .

The average linear approximations [ (u); ]nL g , [ (u); ]nM g  and [ (u); ]nN g

have rates of convergence to the value g(u)  of a smooth function g , in (10), (11) 

and (12), that do not depend on u , for all u U . In appendix (7.5), it is shown 
that 
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[ (u); ] [ (u)]nL g g , (16) 

[ (u); ] [ (u)]nM g g , (17) 

[ (u); ] [ (u)]nN g g , (18) 

uniformly on u U , as n .

5. AVERAGE LINEAR APPROXIMATIONS WITH PREARRANGED ERROR

Let 1:U  be a real-valued error function, with values (u) , where 

u U . The value g(u)  of a smooth function g  can be approximated with a pre-

arranged error (u)  by average linear approximations obtained from the defini-

tions (1), (2), (3), (7), (8) and (9) of [ (u)]nL g , [ (u)]nM g , [ (u)]nN g , [ (u); ]nL g ,

[ (u); ]nM g  and [ (u); ]nN g , respectively, for all u U . From the definition (1) 

of [ (u)]nL g , it follows that the value g(u)  of a smooth function g  with prear-

ranged error can be obtained as 

(u) (u) [ (u)] [ (u)]n ng A g L g , (19) 

for all u U . Observe that the bridge function 

1[ (u)] { [ (u)]} { (u) (u)}n nA g L g g , (20) 

with [ (u)] 0nL g , exactly solves the linear equation (19), for every u U . If 

(u) 0 , for all u U , the linear equation (19) determines the exact bridge be-

tween the average linear approximation [ (u)]nL g  and the value g(u) , for all 

u U .

From the definitions (2), (3), (7), (8) and (9) of [ (u)]nM g , [ (u)]nN g ,

[ (u); ]nL g , [ (u); ]nM g  and [ (u); ]nN g , we can similarly obtain the bridge 

functions 

1[ (u)] { [ (u)]} { (u) (u)}n nB g M g g , (21) 

1[ (u)] { [ (u)]} { (u) (u)}n nC g N g g , (22) 

with [ (u)] , [ (u)] 0n nM g N g , for every u U , and 

1[g(u) ; ] { [ (u) ; ]} { (u) (u)}n nA L g g , (23) 
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1[g(u) ; ] { [ (u); ]} { (u) (u)}n nB M g g , (24) 

1[g(u) ; ] { [ (u); ]} { (u) (u)}n nC N g g , (25) 

with [ (u); ], [ (u); ], [ (u); ] 0n n nL g M g N g , for every u U .

Setting (u) 0 , the bridge functions [ (u)]nA g , [ (u)]nB g , [ (u)]nC g ,

[g(u) ; ]nA , [g(u) ; ]nB  and [g(u) ; ]nC , given by (20), (21), (22), (23), (24) and 

(25), are exact in yielding the value g(u) , for all u U . See appendix (7.6), for 

further theoretical details. 

5.1. The ratio example

The smooth function g  is defined as 1(1) (2)g(u) u (u ) , for every u U ,

where (1) (2)u (u ,u ) , U V , and ( , ) (0, )V .

The random sample n  consists of n  i.i.d. observations 
1 1 1

(1) (2)
i i iX (X ,X ) ,

where 2q , 1 1, ,i n . The marginal 
1

(2)
iX  ranges in a set of positive real val-

ues, for every 1 1, ,i n .

The average linear approximations [ (u)]nL g , [ (u)]nM g  and [ (u)]nN g , given 

by (1), (2) and (3), where u U , are defined as 

1

1 1

(1) (1)
i1

(2) (2)
1 i

X u
[ (u)]

X u

sn

n s
i

n
L g n

n
,

1 2

1 2 1 2

(1) (1) (1)
i i2

(2) (2) (2)
1 1 i i

(X X ) u
[ (u)]

(X X ) u

sn n

n s
i i

n
M g n

n
,

1 2

1 2 3 4 3 4

(1) (1) (1)
i i4

(2) (2) (2)
1 1 1 1 i i

(X X ) u
[ (u)]

(X X ) u

sn n n n

n s
i i i i

n
N g n

n
,

respectively, where u U . Accordingly, the average linear approximations 

[ (u); ]nL g , [ (u); ]nM g  and [ (u); ]nN g , given by (7), (8) and (9), where 

u U , are defined with Gaussian weights 

1

1 1

1

2
(t )1 2 2

i i
1

1
( X ) (2 ) exp (X )

2

s s

t

n n ,
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1 1

1 2 1 2

1

2
(t ) (t )1 2 2

i i i i
1

1
( (X -X )) (2 ) exp (X X )

2

s s

t

n n ,

1 2 3 4

1 1 2 2

1 2 3 4

1 2

i i i i

2 2
(t ) (t ) (t ) (t )2 2 2
i i i i

1 1

( )( (X -X )) (X -X )

1
(2 ) exp (X X X X )

2

s s

s

t t

n n

n ,

respectively, where 1 2 3 4, , , 1, ,i i i i n .

5.2. Some error functions

For a fixed and finite subset U  of the domain V  of the smooth function 
1(1) (2)g(u) u (u ) , we define the constant  as (1) (2)

u Umax (|u u |) , where 
(1) (2)u (u ,u ) , and u U . We consider the following prearranged error functions 

1 1/2 (1) (2)
1,n (u) sin(2 (u u ))n , (26) 

1 1 (1) (2)
2,n (u) sin(2 (u u ))n , (27) 

1 (1) (2)
3(u) sin(2 (u u )) , (28) 

where (1) (2)u (u ,u ) , and u U . Observe that, for all u U , 1,n (u) 0 ,

2,n (u) 0 , as n . See also figure 1, where the error functions 1,n (u) ,

2,n (u) , and 3(u) , defined in (26), (27) and (28), are plotted together on 

(1) (2)u u , where (1) (2)u ,u [0,5].

5.3. Empirical results

We consider the smooth function 1(1) (2)g(u) u (u ) , where (1) (2)u (u ,u )

and u U , and where the subset U V  is determined by the equation 
2(2) (1) (1)u (u ) u 1, for every (1) (2)u (u ,u ) V .

Simulated data were generated from a bivariate folded-normal distribution, 

where the dimension q  is 2q . In particular, let 1 | (0,1)|W N , 2 | (0,1)|W N

and 3 | (0,1)|W N  be i.i.d. random variables, where 1q . The folded-normal 

random variable 
1 1 1

(1) (2)
i iX (X ,X )i  in the sample n  of size n  is obtained as 

1

(1)
1 3iX W W  and 

1

(2)
2 3iX W W , where 1 1, ,i n . Observe that the com-
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ponents 
1

(1)
iX  and 

1

(2)
iX  in 

1 1

(1) (2)
i(X ,X )i  have correlation coefficient 0.5 , for 

every 1 1, ,i n .

Figure 2 and figure 3 show the performance of the average linear approxima-

tions [ (u)]nL g , [ (u)]nM g  and [ (u)]nN g , given by (1), (2) and (3), respectively, 

for 1s  and 1.5s , where (1) (2)u (u ,u ) , and u U . The value 1.5s  yields 

the best results. Approximations [ (u)]nM g  and [ (u)]nN g  always outperform 

[ (u)]nL g , where (1) (2)u (u ,u ) , and u U .

Figure 4 shows the performance of the average linear approximations 

[ (u); ]nL g , [ (u); ]nM g  and [ (u); ]nN g , given by (7), (8) and (9), respectively, 

for 1.5s , where u U . These approximations may be preferable with situa-

tions that require higher levels of randomness from the sample n . Approxima-

tion [ (u); ]nN g , where u U , always produces the best result. 

Figure 5 shows the performance of the average linear approximation 

[ (u)]nL g , given by (1), with prearranged error functions 1, (u)n , 2, (u)n  and 

3(u) , given by (26), (27) and (28), where u U . More precisely, the functions 

1,[ (u)] (u)n nL g , 2,[ (u)] (u)n nL g  and 3[ (u)] (u)nL g  are plotted with 

the corresponding bridge function [ (u)]nA g , given by (20), for exactness, where 

u U .
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Figure 1 – Error functions 1, (u)n , ( ) , 2, (u)n , ( ) , and 3(u) , ( )solid , defined in (26), 

(27) and (28), where (1) (2)u (u ,u ) ; horizontal axes given by the range of (1) (2)u u , where 

(1) (2)u ,u [0,5] . Simulation parameter n  set as 2n  (panel (a)), 5n  (panel (b)), 10n  (panel 

(c)). 
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Figure 2 – Average linear approximations [ (u)]nL g , [ (u)]nM g  and [ (u)]nN g , ( ) , for the ratio 

1(1) (2)g(u) u (u ) , ( )solid , given by (1), (2) and (3), with 1s , where (1) (2)u (u ,u ) ,

2(2) (1) (1)u (u ) u 1 , and u U . Approximations [ (u)]nL g , for 5n  (panel (a)), for 10n

(panel (b)), [ (u)]nM g , for 10n  (panel (c)), and [ (u)]nN g , for 10n  (panel (d)), where u U .
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Figure 3 – Average linear approximations [ (u)]nL g , [ (u)]nM g  and [ (u)]nN g , ( ) , for the ratio 

1(1) (2)g(u) u (u ) , ( )solid , given by (1), (2) and (3), with 1.5s , where (1) (2)u (u ,u ) ,

2(2) (1) (1)u (u ) u 1 , and u U . Approximations [ (u)]nL g , for 5n  (panel (a)), for 10n

(panel (b)), [ (u)]nM g , for 10n  (panel (c)), and [ (u)]nN g , for 10n  (panel (d)), where u U .
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Figure 4 – Average linear approximations [ (u); ]nL g , [ (u); ]nM g  and [ (u); ]nN g , ( ) , for the 

ratio 1(1) (2)g(u) u (u ) , ( )solid , given by (7), (8) and (9), with 1.5s , where (1) (2)u (u ,u ) ,
2(2) (1) (1)u (u ) u 1 , and u U . Approximations [ (u); ]nL g , for 5n  (panel (a)), for 10n

(panel (b)), [ (u); ]nM g , for 10n  (panel (c)), and [ (u); ]nN g , for 10n  (panel (d)), where 

u U .
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Figure 5 – Average linear approximation with prearranged error [ (u)] (u)nL g , ( ) , where 

[ (u)]nL g  is given by (1), for the ratio 1(1) (2)g(u) u (u ) , ( )solid , where (1) (2)u (u ,u ) ,
2(2) (1) (1)u (u ) u 1 , and u U . Approximation [ (u)]nL g , for 5n  with 1s  and error func-

tion 1, (u)n , (panel (a)), for 5n  with 1.5s  and 1, (u)n , (panel (b)), for 5n  with 1.5s  and 

error function 2, (u)n , (panel (c)), for 10n  with 1.5s  and 1, (u)n , (panel (d)), for 10n  with 

1.5s  and 2, (u)n , (panel (e)), for 10n  with 1.5s  and error function 3(u) , (panel (f)), where 

u U . Errors 1, (u)n , 2, (u)n  and 3(u)  are given by (26), (27) and (28), respectively, where u U .

Bridge [ (u)]nA g  for exactness, (- - -), (panels (a) to (f)), is defined in (20), where u U .
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6. CONCLUDING REMARKS

(6.1). Proofs in appendixes (7.4) and (7.5) of uniform convergence of the average 

linear approximations [ (u)]nL g , [ (u)]nM g , [ (u)]nN g , [ (u); ]nL g , [ (u); ]nM g

and [ (u); ]nN g , where u U , given by (1), (2), (3), (7), (8) and (9), in the sense 

of the Weierstrass approximation theorem, are based on straightforward applica-
tions of Tchebychev inequalities to the probabilities that define their weighting 
schemes. See Lorentz (1986), chapter 1, for a parallel proof of uniform conver-
gence of the Bernstein polynomials. Alternative ways of showing uniform con-
vergence may be deduced from the review of Pinkus (2000) of the most relevant 
proofs of the Weierstrass approximation theorem. 

The average linear approximations (1), (2), (3), (7), (8) and (9) are positive lin-

ear operators. For instance, the average linear approximation [ (u)]nL g , where 

u U , defined in (1), is a linear operator, because (u) (u) (u)g a b , where 

a  and b  are reals, and (u)  and (u)  are functions, implies that 

[ (u)] [ (u)] [ (u)]n n nL g aL bL , for all u U , where U V . Moreover, the 

linear operator [ (u)]nL g , where u U , is positive, because (u) 0g , for all 

u V , implies that [ (v )] 0nL g , for all v U , where U V . The theory of 

positive linear operators can provide unifying concepts for the uniform conver-
gence of the average linear approximations (1), (2), (3), (7), (8) and (9). See, spe-
cifically, the results in Korovkin (1960), chapters 1 and 4. See also Stone (1932), 
Akhiezer and Glazman (1993), and Small and McLeish (1994). 

(6.2). Following the definition (7) of the average linear approximation 

[ (u); ]nL g , where u U , we can define the average linear approximation 

[ (u); ]nL g  as 

1 1 1

1 1

1

i i i
1 1

( )[ (u); ] ( ( X u)) ( X u) ( X u)
n n

s s s
n

i i

L g g n g n g n ,

where  is the standard Gaussian probability on 1 , and u U . Following the 

definitions (8) and (9) for [ (u); ]nM g  and [ (u); ]nN g , we can similarly define 

the average linear approximations [ (u); ]nM g  and [ (u); ]nN g , where u U .

Alternative definitions can directly use multivariate Gaussian probabilities  on 
q , and specific covariance structures. Alternative continuous probability models 

can be used as well. 

(6.3). Separation of variables can be very important to apply the average linear 
approximations given by (1), (2), (3), (7), (8) and (9). Let  be a function, such 
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that 
1

1

1
i

1

( X ) 1 ( )
n

s s
p

i

n n O n , as n . For instance, [ (u)]nL g , given by 

(1), may become 

1

1

1
i

1

( )[ (u)] (u) X
n

s
n

i

L g n g n

where u U . Observe that, for all u U , [ (u)] (u) ( )s
n pL g g O n , where 

u U , as n .

(6.4). Average linear approximations (1), (2), (3), (7), (8) and (9) can be studied 
according to the mathematical theory of discretization errors. See, among others, 
Korovkin (1960), chapter 4, Cheney (1982), chapter 3, and Lorentz (1986), chap-
ter 1. 

(6.5). Bogachev (2000) theoretically explores projections of Gaussian measures on 
linear spaces, by assuming the existence of individual functionals to be added to-
gether. See also Bogachev (1998), chapter 3. Average linear approximations (1), 
(2), (3), (7), (8) and (9) are constructive and directly applicable. In particular, they 
do not require projection techniques for their definition and their properties of 
uniform convergence. 

Following Bogachev (2000), let  be the class of permissible information 

functions. We denote by 1( )(u)tg  the 1t  th information input, where 1 1, ,t p ,

and u U . Average linear approximations (1), (2), (3), (7), (8) and (9) can be used 

for the information operator (1) ( )(u) { (u), , (u)}qg g , defined as a vector of 

p  information inputs, where p  can depend on u , for all u U . These average 

linear approximations can similarly work for the information operator 

(1) ( 2 ) (1) ( ) (1) ( 1)(u) { (u), (u, (u)), , (u, (u), , (u))}p pg g g g g g ,

that is defined by recursive inputs, for all u U .

(6.6). Bridge functions [ (u)]nA g , [ (u)]nB g , [ (u)]nC g , [g(u) ; ]nA , [g(u) ; ]nB

and [g(u) ; ]nC , given by (20), (21), (22), (23), (24) and (25), can also be defined 

with a prearranged error function n (u)  that depends on the random sample n

of size n , where u U . The error function n (u)  can be defined so that 

n (u) , in probability, as n , for all u U , where  is a real value. 

(6.7). Average linear approximation [ (u)]nN g , given by (3), can be generalized by 

using all the differences between the pairs of components 1 2

1 2

( ) ( )
i i(X , X )t t  of the 
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sample observations in n , where u U , 1 2, 1, ,t t q , and 1 2, 1, ,i i n . For 

instance, we may define *[ (u)]nN g  as 

1 2

2q-3 2q-21 2 2 1 2

2q-1 2q

(1) (2) (1)
i i

2*
(q-1) (q) (q -1)
i i1 1 1 1

(1) (1) (q)
i i

(X X ) u

[ (u)]
(X X ) u

(X X ) u

q q

s

n n n n
s

sn

i i i i

s

n

N g n g
n

n

,

where u U . Following appendix (7.2), for all u U , it can be shown that 

2*[ (u)] (u) ( )s
n pN g g O n ,

as n . From the definition (9) of [ (u); ]nN g , we can obtain a similar ver-

sion *[ (u); ]nN g , where u U . Following appendix (7.3), for all u U , it can 

be shown that *[ (u)]nN g  approximates (u)g  with an error 2( )s
pO n , as n .

Alternative average linear approximations can be defined on fixed functional rela-

tionships for the sample observations in n , on reasonable estimates, with ap-

propriate values of 0s , of main effects, covariances, interactions, in the popu-
lation distribution F . Following appendixes (7.4) and (7.5), it can be shown that 
all these generalizations are uniform approximations.  

(6.8). Following the definitions of average linear approximations (1), (2), (3), (7), 
(8) and (9), the general theory of the Tchebychev approximation can yield alterna-
tive and relevant definitions. The Tchebychev approximation of the values (u)g

of a smooth function g , where u U , can be accomplished by the minimax so-

lution of an inconsistent system of linear equations. See Davis (1963), chapter 7, 
Feller (1971), chapter 7, Cheney (1982), chapters 1 to 3, and Cheney (1986). See 
also Bogachev (2000). 

7. APPENDIX

(7.1). Assumptions 

The smooth function g  is continuous on its domain V , and bounded by a 

constant 1 0G , 1| (u)|g G , for all u V .

Average approximations [ (u)]nL g , [ (u)]nM g , [ (u)]nN g , [ (u) ; ]nL g ,

[ (u) ; ]nM g  and [ (u) ; ]nN g , defined in (1), (2), (3), (7), (8) and (9), where 

u U , and U V , are bounded by constants 2 3 4 5 6 7, , , , , 0G G G G G G ,
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2| [ (u)]|nL g G , 3| [ (u)]|nM g G , 4| [ (u)]|nN g G , 5| [ (u) ; ]|nL g G ,

6| [ (u) ; ]|nM g G  and 7| [ (u) ; ]|nN g G , for all u V .

We denote by 
1

(u)
kt tg  the derivative of order k  of g ,

1 k

1

(t ) (t )(u) (u) u u
k

k
t tg g ,

where u V . The derivative 
1

(u)
kt tg  is bounded by a constant 8 0G ,

1 8| (u)|
kt tg G , where 2k , for all u V .

(7.2). Proof of ( )s
pO n  in (4), and 2( )s

pO n  in (5) and (6), as n

The average linear approximations [ (u)]nL g , [ (u)]nM g  and [ (u)]nN g  are de-

fined in (1), (2) and (3), where u U .
By Taylor expanding around u  the function 

1i
( X u)s

g n ,

for every 1 1, ,i n , where u U , the function 

1 2i i( (X -X ) u)sg n ,

for every pair 1 2( , )i i , where 1 2, 1, ,i i n , and u U , and the function 

1 2 2q 2q-1

(1) (1) (q) (q)(1) (q)
i i i i( (X -X ) u , , (X -X ) u )s s

g n n

for every vector 1 2 2 1 2( , , , , )q qi i i i , where 1 2 2 1 2, , , , 1, ,q qi i i i n ,

(1) (q)u (u , ,u ) , and u U , we have that 

1, 1,[ (u)] (u) (u) (u)n n nL g g ,

2, 2,[ (u)] (u) (u) (u)n n nM g g ,

3, 3,[ (u)] (u) (u) (u)n n nN g g ,

for all u U . The quantities 1, (u)n , 2, (u)n  and 3, (u)n  are obtained as 

1

1 1

1 1

( )1
1, i

1 1

(u) (u) X
qn

ts
n t

i t

n g n ,

1 1

1 1 2

1 2 1

(t ) (t )2
2, i i

1 1 1

(u) (u) (X X )
qn n

s
n t

i i t

n g n ,
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1 2

1 2 2 1 2

2q-1 2q

(1) (1)
1 i i

2
3,

1 1 1 1 (q) (q)
i i

(u) (X X )

(u)

(u) (X X )
q q

T s

n n n n
q

n

i i i i s
q

g n

n

g n

,

where , (u)k n , 1, 2,3k , are the remainders, and u U .

Note that 

1

1

( )
i[ X ] ( )ts sE n O n ,

as n , for every 1 1, ,i n , where 1 1, ,t q ,

1 1

1 2

( ) ( )
i i[ (X -X )] 0t tsE n ,

for every pair 1 2( , )i i , where 1 2, 1, ,i i n , and 1 1, ,t q . Note also that 

1 1 2 2

1 2 3 4

( ) ( ) ( ) ( ) 2
i i i i[ (X -X ) (X -X )] ( )t t t ts s sE n n O n ,

as n , for every vector 1 2 3 4( , , , )i i i i , where 1 2 3 4, , , 1, ,i i i i n , and 

1 2, 1, ,t t q . Then, for every u U ,

, , , , ,[| (u) (u)|] | [ (u) (u)]| (u) 0k n k n k n k n k nE E ,

where 1, 2,3k . There also exists a finite constant , (u) 0k nM , such that 

, , , ,(u) (u) [| (u) (u)|]k n k n k n k nM E ,

where 1, 2,3k , and u U . For every 0t , and every u U , we also have 

that 

, , , ,

0

(u) (u) (| (u) (u)| )k n k n k n k nM v dP v

,

, ,

( u )

(| (u) (u)| )

k n

k n k n

t

v dP v

,

, , ,

( u )

(u) (| (u) (u)| )

k n

k n k n k n

t

t dP v

, , , ,(u) (| (u) (u)| (u))k n k n k n k nt P t ,
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where 1, 2,3k , and u U . Setting , (u)k nt , where 0 , we obtain the 

Tchebychev inequality 

1
, , , ,(| (u) (u)| ) (u) (u)k n k n k n k nP M ,

where 1, 2,3k , and u U . For every 0s , it follows that 

1, 1,(u) (u) ( )s
n n pO n , where u U , as n , because 1, (u) (1)nM O

and 1, (u) ( )s
n O n , where u U , as n . It also follows that 

2
, ,(u) (u) ( )s

k n k n pO n , where 2,3k , and u U , as n , because 

, (u) (1)k nM O  and , (u) ( )s
k n O n , where 2,3k , and u U , as n .

Accordingly, it holds that 2
1, (u) ( )s

n pO n , where u U , as n , and 

3
, (u) ( )s

k n pO n , where 2,3k , and u U , as n .

(7.3). Proof of ( )s
pO n  in (10), and 2( )s

pO n  in (11) and (12), as n

The average linear approximations [ (u) ; ]nL g , [ (u) ; ]nM g  and [ (u) ; ]nN g

are defined in (7), (8) and (9), where u U .
Observe that 

1 1

1

1

1 (1 )
i i

1

( X ) ( X ) ( )
n

s s s
p

i

n n n O n ,

as n , for every 1 1, ,i n ,

1 2 1 2

1 2

1

2 2(1 )
i i i i

1 1

( (X -X )) ( (X -X )) ( )
n n

s s s
p

i i

n n n O n ,

as n , for every pair 1 2( , )i i , where 1 2, 1, ,i i n ,

1 2 2q-1 2q

1 2 2 1 2

1

(1) (1) (q) (q)
i i i i

1 1 1 1

( (X -X )) ( (X -X ))
q q

n n n n
s s

i i i i

n n

1 2 2q-1 2q

(1) (1) (q) (q)
i i i i( (X -X )) ( (X -X ))s s

n n

2 2( )( )q q s
pn O n ,
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as n , for every vector 1 2 2 1 2( , , , , )q qi i i i , where 1 2 2 1 2, , , , 1, ,q qi i i i n .

Then, proofs of ( )s
pO n , as n , in (10), and 2( )s

pO n , as n , in (11) 

and (12), directly proceeds following appendix (7.2). 

(7.4). Proof of uniform approximation in (13), (14) and (15) 

The average linear approximation [ (u)]nL g  is defined in (1), where u U .

Under the assumption in appendix (7.1) that g  is a bounded smooth function, it 

holds that 

1i 1| ( X u) (u)| 2s
g n g G ,

for every 1 1, ,i n , and all u U . The sample variance 2ˆ (u)  of [ (u)]nL g ,

with probability 1
n  assigned to every sample vector 

1i
X , where 1 1, ,i n , can 

be defined by 

1

1

1 22
i

1

ˆ (u) { ( X u) (u)}
n

s

i

n n g n g ,

for all u U . For any constant 0 , we obtain the Tchebychev inequalities 

1
i1

1

| { ( X u ) ( u )}|sn g n g

n

1
1

i1

2 2 2
i

| { ( X u ) ( u )}|

{ ( X u) (u)}
s

s

n g n g

n g n g

2 2ˆ (u)

1 2 2
14n G ,

where u U . We let 1/2Tu (uu ) , for all u V . Observe that, for a given 

constant 0 , we can find a constant 0 0  such that *
0u -u  implies that 

1 *| { (u )-g(u)}|n g  and *| (u )-g(u)|g , where 0  and *u , u V . Then, it 

follows that 

1

1

1
i

1

| [ (u)] (u)| { ( X u) (u)}
n

s
n

i

L g g n g n g
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1
1

i1

1
i

| { ( X u ) ( u )}|

| ( X u) (u)|
s

s

n g n g

n g n g

1
1

i1

1
i

| { ( X u ) ( u )}|

| ( X u) (u)|
s

s

n g n g

n g n g

1 2 2
14 .n G

For n  sufficiently large, for all u U , we also have that 

| [ (u)] (u)| 2nL g g .

Finally,  is independent of u , for all u V . Under the assumption in appendix 

(7.1) that g  is a continuous function, it follows that [ (u)] (u)nL g g  uniformly, 

for all u V , as n .

Uniformity in (14) and (15) for the average linear approximations [ (u)]nM g

and [ (u)]nN g , defined in (2) and (3), where u U , can be shown in the same 

way.

(7.5). Proof of uniform approximation in (16), (17) and (18) 

The average linear approximation [ (u); ]nL g  is defined in (7) and studied by 

(16), where u U . The sample variance 2ˆ (u ; )  of [ (u); ]nL g , with probabil-

ity

1 1

1

1

i i
1

( X ) ( X )
n

s s

i

n n ,

assigned to every sample vector 
1i

X , where 1 1, ,i n , is defined by 

1 1 1 1

1 1 1

1

22
i i i i

1 1 1

ˆ( X ) (u; ) ( X ) { ( X u) (u)} ( X )
n n n

s s s s

i i i

n n g n g n ,

for all u U . Following appendix (7.4), under the assumptions in appendix (7.1), 
for any constant 0 , we obtain 

1 1
1

1 i1

1

i i
1 | { ( X u ) ( u )}|

( X ) ( X )
s

n
s s

i n g n g

n n
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1 1 1
1

1 i1

2

2 2
i i i

1 | { ( X u ) (u )}|

( X ) { ( X u) (u)} ( X )
s

n
s s s

i n g n g

n g n g n

2 2ˆ (u; )

1

1

1

2 2
i 1

1

( X ) 4
n

s

i

n G ,

where u U . For a given constant 0 , we have that 

| [ (u); ] (u)|nL g g

1 1 1
1

1 i1

1

i i i
1 | { ( X u ) ( u )}|

( X ) | ( X u) (u)| ( X )
s

n
s s s

i n g n g

n g n g n

1 1 1
1

1 i1

1

i i i
1 | { ( X u ) ( u )}|

( X ) | ( X u) (u)| ( X )
s

n
s s s

i n g n g

n g n g n

1

1

1

2 2
i 1

1

( X ) 4
n

s

i

n G ,

where u U . Finally, [ (u); ] (u)nL g g  uniformly, for all u U , as n .

Uniformity in (17) and (18) for the average linear approximations [ (u); ]nM g

and [ (u); ]nN g , defined in (8) and (9), where u U , as n , can be shown 

in the same way. 

(7.6). Bridge functions (1), (2), (3), (7), (8) and (9) 

In appendix (7.4), the result (19) for the bridge function [ (u)]nA g , given by 

(20), can be regarded as exactness for the average linear approximation [ (u)]nL g

in the corresponding sequence of approximations, for all u U , as n . Simi-

lar results hold, in appendixes (7.4) and (7.5), for the bridge functions [ (u)]nB g ,

[ (u)]nC g , [ g(u) ; ]nA , [ g(u) ; ]nB  and [g(u) ; ]nC , given by (21), (22), (23), (24) 

and (25), and the corresponding sequences of approximations, for all u U , as 
n .
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RIASSUNTO

Approssimazioni lineari medie per funzioni regolari 

Vengono introdotte approssimazioni lineari medie per funzioni regolari, utilizzando 
probabilità empiriche e Gaussiane. Viene dimostrato come la convergenza di queste ap-
prossimazioni sia uniforme, nel senso del teorema di approssimazione di Weierstrass. 
Vengono infine studiate approsimazioni lineari medie con funzioni prestabilite di errore. 
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SUMMARY

Average linear approximations for smooth functions 

Average linear approximations for smooth functions using empirical and Gaussian 
probabilities are introduced. The convergence of these approximations is shown to be 
uniform, in the sense of the Weierstrass approximation theorem. Average linear approxi-
mations with prearranged error functions are finally studied. 


