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1. INTRODUCTION

Multiple frame surveys have recently received a great deal of attention from researchers
(see Skinner and Rao, 1996; Lohr and Rao, 2000, 2006; Mecatti, 2007; Lohr, 2007). Al-
though the initial use of multiple frame surveys was motivated by a reduction of sur-
vey sampling costs (see Hartley, 1962), its current use is more geared towards address-
ing frame undercoverage shortcomings such as capturing special, rare, and difficult-to-
sample populations (see Kalton and Anderson, 1986).

In multiple frame surveys, it is assumed that the population of interest is covered
adequately by a combination of sampling frames, each covering partially the population.
Estimation is usually carried out by sampling independently from each of the sampling
frames and creating estimators that account for units appearing in different sampling
frames.

As in classical survey sampling, the standard error plays a crucial role in multiple
frame survey sampling as it is used to measure the quality of survey estimators. Tech-
niques to generate standard errors of survey estimators have been designed and can be
put into two main categories namely the analytic techniques and the replication tech-
niques. The analytic techniques include the Taylor linearization which involves differ-
entiation of some functions of interest; whereas the replication techniques include the
Jackknife and the bootstrap which rely solely on computation. The reader is invited to
look into (see Lohr and Rao, 2000; Lohr, 2007).

Among all these standard error estimation techniques, the bootstrap is the most ad-
vantageous one in that it works for both smooth and non smooth statistics; in addition,
it allows the user to choose the number of replication runs needed. Statistics Canada
has gradually settled into using the bootstrap technique; and R= 500 to R= 1000 sim-
ulation runs are used in practice in the estimation of the standard error through the
bootstrap technique (see Girard, 2009).

1 Corresponding Author. E-mail: cataidara@utg.edu.gm
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It is worth noting that the bootstrap method is based on Monte Carlo simulation
which uses pseudo random numbers and has a convergence rate of 1/

p
R where R is the

number of simulation runs. However, there exists a more efficient simulation technique
(called quasi Monte Carlo simulation) which has a faster convergence rate 1/R and relies
on quasi random numbers that are more uniformly distributed than the pseudo random
numbers in the unit hypercube.

The main contribution of the present paper is that it proposes a couple of techniques
that use quasi Monte Carlo simulation to generate efficient resamples for the bootstrap
standard error estimation in multiple frame surveys. These techniques are inspired from
Aidara (2013) and Teytaud et al. (2006).

The rest of the article is organized as follows. Section 2 gives a review of the standard
Sobol sequence and at the same time presents the shuffled Sobol sequence. Section 3
presents a brief review of the multiplicity estimator. Section 4 proposes applications of
quasi Monte Carlo simulation in bootstrap variance estimation of multiple frame survey
estimators. Section 5 presents empirical studies that investigate the performance of the
proposed techniques to the bootstrap variance estimation of the multiplicity estimator.
Section 6 gives some concluding remarks.

2. THE SHUFFLED SOBOL SEQUENCE

As the most popular and used quasi random sequence, the Sobol sequence has been
studied extensively in the applied mathematics, computer science, as well as other fields
of knowledge. As a consequence we only consider a brief review of the construction of
the Sobol sequence and follow the presentation in Joe and Kuo (2008).

The shuffled Sobol sequence is derived from the standard Sobol sequence which is a
D -dimensional sequence (where D ≥ 2) that uses exclusively base two in all its dimen-
sions. The construction of the shuffled Sobol sequence follows a five-step procedure.
The first four steps form the standard Sobol sequence and the fifth step performs the
randomization. Since these steps are identical for each of the dimensions of the Sobol
sequence, the procedure for one dimension is illustrated below.

Step 1: choose an arbitrary primitive polynomial of degree α as follows

P (x) = xα+ a1xα−1+ · · ·+ aα−1x + 1 (1)

with coefficients ai ∈ {0,1}. For instance the polynomials x+1 and x2+ x+1 are
primitive polynomials of degree one and two respectively.

Step 2: choose arbitrarily the set of the first α initialization numbers
{m1, m2, · · · , mα} such that each mi is odd and less than 2i for i = 1, · · · ,α; then
generate the rest of the initialization numbers through the recurrence relation

m j = 2a1m j−1⊕ 22a2m j−2⊕ · · ·⊕ 2α−1aα−1m j−α+1⊕ 2αm j−α⊕m j−α (2)
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where ai are the coefficients of the primitive polynomial, j > α, and ⊕ is the xor
operation defined as 1⊕ 0= 0⊕ 1= 1 and 0⊕ 0= 1⊕ 1= 0.

Step 3: define the direction numbers by

v j =
m j

2 j
.

This is equivalent to expressing m j in binary representation and then shifting the
position of the fractional point by j places to the left.

Step 4: use the more efficient recursive algorithm in Antonov and Saleev (1979) to cal-
culate the (k + 1)t h Sobol number as

ψk+1 =ψk ⊕ v` (3)

where ` is the index of the first 0 digit from the right in the binary representation
of k, v` is the `t h direction number, andψ0 = 0 is assumed to be the starting point
of the sequence.

Step 5: reshuffle randomly the generated standard Sobol numbers to obtain the shuffled
Sobol sequence.
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Figure 1 – 250 Sobol points.

It is worth noting that a distinct primitive polynomial is chosen for each dimension
of the Sobol sequence.

The quality of the Sobol sequence depends on the choice of the initialization num-
bers. Any improper choice of these numbers leads to high correlations between different
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dimensions of the Sobol sequence (see left hand side plot of Figure 1). Fortunately, ta-
bles of good initialization numbers together with primitive polynomials are available in
the literature (for more details, see Joe and Kuo, 2008).

The shuffled Sobol sequence is contrasted with the standard Sobol sequence in Fig-
ure 1. It is obvious that the shuffled Sobol sequence displays a more uniform distribution
than the standard Sobol sequence in high dimension (see right hand side plot of Figure 1).

3. REVIEW OF THE MULTIPLICITY ESTIMATOR

Suppose our population of interest U which consists of N units is adequately covered
by Q(≥ 2) overlapping sampling frames each of size N (q) and denoted by A(q) where
q = 1, · · · ,Q. The frames divide naturally the population of interest into 2Q − 1 non
overlapping domains. The majority of estimators in multiple frame surveys are based
on these non overlapping domains (see, e.g., Halton, 1960; Skinner and Rao, 1996).
However Mecatti (2007) proposed a new approach that does not make use of these non
overlapping domains. This approach makes use of a partial membership information,
termed multiplicity which is the number of frames a unit belongs. It is worth noting that
unit multiplicity can be collected easily during the data collection process.

To illustrate the details of the multiplicity approach, suppose Q independent proba-
bility samples each of size n(q) and denoted by S (q) is selected from A(q) for q = 1, · · · ,Q.
The probability sampling design for A(q) generates for unit k a known inclusion proba-
bility, π(q)k > 0, and a corresponding sampling design weight d (q)k = 1/π(q)k . The values
(yqk , mqk ) of the study variable y and the multiplicity m are recorded for all k ∈ S (q). At
this juncture it is worth observing that every population unit i ∈ U belongs to a finite
number of sampling frames mi and therefore any frame-specific unit (qk) corresponds
to a unique i ∈U . If the objective is to estimate a population total

Ty =
N
∑

i=1

yi ,

then it is easy to verify that

Ty =
Q
∑

q=1

∑

k∈A(q)
yqk m−1

qk .

As a result, the multiplicity estimator of the population total Ty is defined as

ty =
Q
∑

q=1

∑

k∈S (q)
d (q)k yqk m−1

qk .

The estimator ty is indeed a function of weights and can thus be expressed as

ty = f
�

d (1), · · · ,d (q), · · · ,d (Q)
�

,
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where d (q) is the vector of weights from frame q .

4. THE PROPOSED ALGORITHMS

This section presents two algorithms that generate efficiently independent bootstrap
samples for multiple frame surveys while using quasi random sequences. These algo-
rithms are applicable to all multiple frame survey estimators. A notation similar to the
one used in Lohr and Rao (2006) is adopted throughout the rest of the paper.

Let A(1), · · · ,A(Q) be the Q overlapping sampling frames that cover adequately the
population of interest. Let A(q), q = 1, · · · ,Q be partitioned into H (q) nonoverlap-
ping strata A(q) =

¦

A(q)1 , · · · ,A(q)
H (q)

©

, where A(q)h is comprised of N (q)h primary sampling

units (psu). Let S (1), · · · , S (Q) be Q independent samples drawn respectively from the
Q frames. A probability sample S (q)h is selected from the h-th stratum of the q -th sam-

pling frame A(q)h . The probability sampling design generates for psu i within the h-th

stratum of the q -th sampling frame a known inclusion probability, π(q)hi > 0, and a cor-

responding sampling design d (q)hi = 1/π(q)hi . It is worth noting that S (q)h = {1,2, · · · , n(q)h },
S (q) =
⋃H (q)

h=1 S (q)h , and n(q) =
∑H (q)

h=1 n(q)h is the size of S (q).
The first proposed algorithm works generally in the following manner. First, a Sobol

sequence of D =
∑Q

q=1 H (q) dimensions is generated. Then, the first H (1) components of

the Sobol sequence are mapped to the H (1) strata of the sample S (1) on a one-to-one basis,
the next H (2) components of the Sobol sequence are mapped to the H (2) strata of the
sample S (2) on a one-to-one basis, and so on. It is worth noting that the Sobol sequence
elements are mapped through the quantile function of the binomial distribution.

For a detailed illustration of the proposed algorithm, suppose a bootstrap sample
S∗(q)h is drawn from S (q)h by sampling with replacement for h = 1,2, · · · , H (q) indepen-

dently. Sampling with replacement the units of S (q)h ensures a selection probability

of 1/n(q)h for each unit. If x (q)hi denotes the number of times unit i of stratum h ap-

pears in the bootstrap sample S∗(q)h and m(q)h (≤ n(q)h ) the number of draws, then S∗(q)h

can be represented as
§

x (q)h1
, · · · , x (q)

hn(q)h

ª

which has a multinomial distribution with size

m(q)h =
∑n(q)h

i=1 x (q)hi and cell probabilities p (q)hi = 1/n(q)h . It is worth noting that each x (q)hi

is binomially distributed with size m(q)h and probability p (q)hi . In addition, if i − 1 units

have already been observed, then the i -th unit x (q)hi has a binomial distribution with size

m(q)h −
∑i−1

j=1 x (q)h j and probability p (q)hi /
�

1−
∑i−1

j=1 p (q)h j

�

.

The bootstrap sample S∗(q)h is generated by mapping the elements of the h-th com-

ponent of the H (q) components of the Sobol sequence to the units of S (q)h as shown in
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the following procedure.

1. Generate ψ(q)h1
from the h-th dimension of the Sobol sequence.

2. Define x (q)h1
minimal such that

D
�

ψ(q)h1

�

= inf
¦

x (q)h1
:ψ(q)h1

≤ Prob
�

X (q)h1
≤ x (q)h1

�©

where X (q)h1
is binomially

distributed with size m(q)h and probability p (q)h1
.

3. For i = 2 to n(q)h

1. Generate ψ(q)hi from the h-th dimension of the Sobol sequence.

2. Define x (q)hi minimal such that

D
�

ψ(q)hi

�

= inf
¦

x (q)hi :ψ(q)hi ≤ Prob
�

X (q)hi ≤ x (q)hi

�©

where X (q)hi is binomially

distributed with size m(q)h −
∑i−1

j=1 x (q)h j and probability p (q)hi /
�

1−
∑i−1

j=1 p (q)h j

�

.

4. Repeat steps 1 to 3 for h = 1, · · · , H (q) to obtain the bootstrap sample from the

stratified sample S∗(q) =
⋃H (q)

h=1 S∗(q)h

5. Repeat steps 1 to 4 for q = 1, · · · ,Q to obtain the bootstrap sample for the multiple
frame survey.

The second proposed algorithm uses a Sobol sequence whose dimension is equal to
the number of sampling frames i.e. D =Q. In this method, the first component of the
Sobol sequence is mapped to the elements of the sample drawn from the first sampling
frame, the second component of the Sobol sequence is mapped to the elements of the
sample drawn from the second sampling frame, and so on. The details of the mapping
are presented in the following algorithm:

1. Generate ψ(q)h1
from the q -th dimension of the Sobol sequence.

2. Define x (q)h1
minimal such that

D
�

ψ(q)h1

�

= inf
¦

x (q)h1
:ψ(q)h1

≤ Prob
�

X (q)h1
≤ x (q)h1

�©

where X (q)h1
is binomially

distributed with size m(q)h and probability p (q)h1
.

3. For i = 2 to n(q)h

1. Generate ψ(q)hi from the q -th dimension of the Sobol sequence.

2. Define x (q)hi minimal such that

D
�

ψ(q)hi

�

= inf
¦

x (q)hi :ψ(q)hi ≤ Prob
�

X (q)hi ≤ x (q)hi

�©

where X (q)hi is binomially

distributed with size m(q)h −
∑i−1

j=1 x (q)h j and probability p (q)hi /
�

1−
∑i−1

j=1 p (q)h j

�

.
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4. Repeat steps 1 to 3 for h = 1, · · · , H (q) to obtain the bootstrap sample from the

stratified sample S∗(q) =
⋃H (q)

h=1 S∗(q)h . Notice that the first n(q)1 elements of the Sobol

sequence are used for the first stratum of S∗(q) that is S∗(q)1 , the second n(q)2 elements
of the Sobol sequence are used for the second stratum of S∗(q) that is S∗(q)2 , and so
on.

5. Repeat steps 1 to 4 for q = 1, · · · ,Q to obtain the bootstrap sample for the multiple
frame survey.

At this juncture, it is befitting to present both a flowchart and an example that illus-
trate the use of these algorithms. Since the algorithms are similar, only a flowchart for
the first algorithm from steps 1 to 3 is presented and captured in Figure 2.

As for the example, consider the population in Table 1 where the column names are
uid, h, i, y represent respectively the unique identity number of the element, the stratum,
the relative number of the stratum element, some parameter of interest. Without loss
of generality, Q(= 2) overlapping frames (as in Tables 2, 3) with H (1) =H (2)(= 2) strata
are selected from the population independently. Notice that a further column denoted
m is added in these tables to specify whether or not the element is only captured in
one frame or both. Consider further that two stratified samples S (1) and S (2) are selected
independently, using the sampling package (Tillé and Matei, 2016), from the frames such
that S (1) = S (1)1 ∪ S (1)2 and S (2) = S (2)1 ∪ S (2)2 . Suppose we selected five elements in S (1)1

and four elements in S (1)2 ; three elements in S (2)2 and four elements in S (2)2 . Using the
uid, the selected elements are as follows S (1)1 = {1,3,5,10,11} and S (1)2 = {16,32,34,35}
from the first and second stratum of the first frame; and S (2)1 = {8,9,10} and S (2)2 =
{19,20,24,27} from the first and second stratum of the second frame. From the first
proposed algorithm, we have to generate a reshuffled Sobol sequence of 4 dimensions
and use the first 2 dimensions for the resample S∗(1) and the remaining 2 dimensions
for the resample S∗(2). Upon applying this algorithm, we have obtained the following
stratum resamples S∗(1)1 = {1,0,1,0,2}, S∗(1)2 = {1,1,0,1}, and S∗(2)1 = {0,1,1}, S∗(2)2 =
{0,1,1,1}. The numbers in the stratum resample should be understood as the number
of times the corresponding elements are selected.

From the second proposed algorithm, we have to generate a reshuffled Sobol se-
quence of 2 dimensions and use the elements in the first dimension for the resample
S∗(1) and the elements in the second dimension for the resample S∗(2). In details, we
first generate a sequence of length n(1) = n(1)1 + n(1)2 in the first dimension. Then we
use the first n(1)1 points for the first stratum and the next n(1)2 points for the second stra-
tum. The same approach is used for the resample S∗(2). Upon applying this algorithm,
we have obtained the following stratum resamples S∗(1)1 = {1,0,1,0,2}, S∗(1)2 = {1,1,1,0}
and S∗(2)1 = {1,1,0}, S∗(2)2 = {2,0,0,1}.
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Start

Declare a vector of size n(q)h say
ou t that stores the number of

times psu i appears in the resample

Generate a vector of n(q)h shuffled Sobol points

say qvec such that its i th entry is ψ(q)hi

Set i ← 1 and m(q)h ← n(q)h − 1

i ≤ n(q)h

Define x (q)hi minimal such that ψ(q)hi ≤
Prob
�

X (q)hi ≤ x (q)hi

�

where X (q)hi is bi-

nomially distributed with size m(q)h

and probability p (q)hi /
�

1−
∑i−1

j=1 p (q)h j

�

Store x (q)hi in the i th entry of vector ou t

Set m(q)h ← m(q)h −
∑i−1

j=1 x (q)hi

Set i ← i + 1

Return the output vector ou t ;

Stop

true

false

Figure 2 – Flowchart for the selection of the resample S∗(q)h through the first algorithm steps 1-3.
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TABLE 1
A toy population from which two overlapping frames are extracted.

uid h i y
1 1 1 1.693
2 1 2 1.980
3 1 3 0.904
4 1 4 0.536
5 1 5 0.990
6 1 6 2.147
7 1 7 1.014
8 1 8 0.895
9 1 9 1.918
10 1 10 1.302
11 1 11 3.667
12 1 12 0.150
13 1 13 1.059
14 1 14 3.100
15 1 15 3.503
16 2 1 3.187
17 2 2 0.456
18 2 3 1.389
19 2 4 2.466
20 2 5 2.923
21 2 6 1.546
22 2 7 6.133
23 2 8 0.848
24 2 9 1.003
25 2 10 1.677
26 2 11 3.040
27 2 12 3.444
28 2 13 1.781
29 2 14 5.052
30 2 15 0.530
31 2 16 1.690
32 2 17 0.970
33 2 18 1.660
34 2 19 0.755
35 2 20 1.817
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TABLE 2
First frame extracted from the toy population.

uid h i y m
1 1 1 1.693 1
2 1 2 1.980 2
3 1 3 0.904 1
4 1 4 0.536 2
5 1 5 0.990 2
7 1 6 1.014 1
10 1 7 1.302 2
11 1 8 3.667 1
13 1 9 1.059 1
14 1 10 3.100 1
16 2 1 3.187 2
17 2 2 0.456 1
20 2 3 2.923 2
25 2 4 1.677 2
26 2 5 3.040 1
28 2 6 1.781 2
29 2 7 5.052 2
31 2 8 1.690 1
32 2 9 0.970 1
34 2 10 0.755 1
35 2 11 1.817 2
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TABLE 3
Second frame extracted from the toy population.

uid h i y m
2 1 1 1.980 2
4 1 2 0.536 2
5 1 3 0.990 2
6 1 4 2.147 1
8 1 5 0.895 1
9 1 6 1.918 1
10 1 7 1.302 2
12 1 8 0.150 1
15 1 9 3.503 1
16 2 1 3.187 2
18 2 2 1.389 1
19 2 3 2.466 1
20 2 4 2.923 2
21 2 5 1.546 1
22 2 6 6.133 1
23 2 7 0.848 1
24 2 8 1.003 1
25 2 9 1.677 2
27 2 10 3.444 1
28 2 11 1.781 2
29 2 12 5.052 2
30 2 13 0.530 1
33 2 14 1.660 1
35 2 15 1.817 2
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It is worth noting that the second algorithm presents an advantage over the first
one in that the dimension of the Sobol sequence is reduced significantly. Knowing that
quasi random sequences present a better uniform distribution of their elements in low
dimension, the results from this algorithm are expected to be more accurate.

Then the extended Rao-Wu bootstrap weight for the frames proposed in Lohr (2007)
was used to compute the variance. Suppose d (q)hi is the weight attached to unit i of stra-
tum h for the q -th sampling frame. Then the corresponding bootstrap weight for the
b -th simulation run is denoted by d (q)hi [b ] and defined as

d (q)hi [b ] = d (q)hi

n(q)h

m(q)h

x (q)hi [b ],

where x (q)hi [b ] is the number of times unit i of stratum h is selected in the b -th simulation
run.

To estimate the bootstrap variance of an estimator say t , the separated and combined
bootstrap approaches proposed in Lohr (2007) are used. For the separated bootstrap
approach, Bq bootstrap samples are created from the sample S (q) of the q -th frame Aq

using the above algorithm. For each of the H (q) dimensions associated with the sample
S (q), Bq n(q)h elements are generated and the first n(q)h elements are used for the creation

of the h-th stratum of the first bootstrap sample S∗(q)h [1], the next n(q)h elements are

used for the creation of the h-th stratum of the second bootstrap sample S∗(q)h [2], and

so on. Therefore, the b -th bootstrap sample is defined as S∗(q)[b ] =
⋃H (q)

h=1 S∗(q)h [b ]. The
separated bootstrap method is estimated by

vs =
Q
∑

q=1

1
Bq

Bq
∑

b=1

(t q
y [b ]− ty )

2. (4)

Note that t q
y [b ] = f (d (1), · · · ,d (q)[b ], · · · ,d (Q)) which means that the original weights

in S (q) are replaced by the bootstrap weights for just the frame q in the b -th simulation
run

For the combined bootstrap approach, B bootstrap samples are created from the
sample S (q) of the q -th frame Aq using the above algorithm. For each of the H (q) di-

mensions associated with the sample S (q), Bn(q)h elements are generated and the first

n(q)h elements are used for the creation of the h-th stratum of the first bootstrap sam-

ple S∗(q)h [1], the next n(q)h elements are used for the creation of the h-th stratum of the

second bootstrap sample S∗(q)h [2], and so on. Therefore, the b -th bootstrap sample is
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defined as S∗(q)[b ] =
⋃H (q)

h=1 S∗(q)h [b ]. The combined bootstrap method is given by

vc =
1
B

B
∑

b=1

(ty[b ]− ty )
2. (5)

Note that ty[b ] = f (d (1)[b ], · · · ,d (q)[b ], · · · ,d (Q)[b ])which means that in the b -th sim-
ulation run, the original weights in the Q frames are simultaneously replaced by the
bootstrap weights from the Q independent samples.

For the second algorithm, the method works as follows. For the q -th dimension,
Bq n(q) elements are generated and the first n(q) elements are used for the creation of the
first bootstrap sample. The next n(q) elements are used for the creation of the second
bootstrap sample and so on. It is worth noting that the size of S (q) is n(q) =

∑H (q)
h=1 n(q)h

and that the b -th bootsrap sample is obtained by using the first n(q)1 elements of the
sequence for the sampling of the units of the first stratum of S (q), the next n(q)2 elements
of the sequence for the sampling of the units of the second stratum of S (q), and so on.

5. SIMULATION STUDY

A limited simulation study was carried out to investigate the performance of the pro-
posed methods in a three-frame setup. Each of the six different stratified finite popula-
tions described in Chen and Sitter (1999) was used in some preliminary simulations. For
each population, we created three overlapping frames and tested the proposed methods;
and there were no significant differences in the performance of the proposed methods.
Hence we decided to report the results of our simulation study using only one of these
six populations namely population 2 of Chen and Sitter (1999). As a reminder, popula-
tion 2 had H = 4 strata with stratum sizes Nh = 8000− 300h for h = 1,2,3,4. For the
i th unit within the hth stratum, the characteristics xhi were generated by adding h/2 to
χ 2

2h variate and the yhi were generated using the model

yhi = αh +βh xhi + γh x2
hi + ξh xa

hiεhi (6)

for specific values of αh ,βh ,γh ,a and ξh , where εhi are random variables, independent
and identically distributed over i , from a chi-square distribution with bh degrees of free-
dom, χ 2

hi .
For each parameter combination, Nh pairs of characteristic variables (xhi , yhi ) were

generated using ( 6). The six parameter combinations used to generate the stratified finite
population 2 are given in Table 4.

After constructing population 2, we formed Q = 3 overlapping sampling frames
namely A1, A2 and A3 in the following manner. First every pair (y j , x j ) where j is a
unique element of population 2 that corresponds to stratum specific unit hi was ran-
domly assigned to the Q = 3 sampling frames according to 3 independent Bernoulli
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TABLE 4
Parameter settings for generated finite Population 2.

h αh βh γh ξh a εh
1 2 0.5 0 0.2 -0.5 χ 2

3
2 6 1.0 0 0.2 -0.5 χ 2

4
3 10 -0.5 0 0.2 -0.5 χ 2

5
4 14 -1.0 0 0.2 -0.5 χ 2

6

trials with probability αq = N (q)/N for q = 1,2,3. Then we made sure that none of
the sampling frames was empty and that when combined, they covered adequately the
population of interest.

Three stratified random samples S (1), S (2) and S (3) of sizes n(1), n(2) and n(3) units
were then selected from frame A1, A2 and A3 respectively. The parameters considered
here are the population total of the study variable y denoted by Ty , the population size
N , and the ratio Ty/Tx respectively.

For the purpose of comparison, the following variance estimators were considered:
the separated bootstrap (LSEP) as described in Lohr (2007), the combined bootstrap
(LCOM) as described in Lohr (2007), the separated bootstrap using the first proposed al-
gorithm (QSEP1), the combined bootstrap using the first proposed algorithm (QCOM1),
the separated bootstrap using the second proposed algorithm (QSEP2), and the com-
bined bootstrap using the second proposed algorithm (QCOM2).

A total of B = 1000 simulation runs were performed. For each simulation run, three
independent samples S (1), S (2) and S (3) were selected from each frame independently and
variance estimates were created using the above four variance estimators. The sizes for
the bootstrap samples were m(1) = n(1)− 1, m(2) = n(2)− 1 and m(3) = n(3)− 1 for S (1),
S (2) and S (3) respectively. For all these methods, the number of replications was R= 100.
The true MSEs are approximated by 10,000 simulation runs.

All computations were performed in R (R Core Team, 2018). The R package rand-
toolbox (Christophe and Petr, 2015) was used to generate the Sobol numbers for the
proposed quasi Monte Carlo methods. The Rcpp package (Eddelbuettel and Balamuta,
2017) was used to implement the ratio and total estimators.

The performance of the above variance estimators was measured and compared in
terms of the simulated relative percentage bias (RB %), coefficient of variation (CV), and
empirical coverage probabilities of 95 % confidence intervals (Coverage). The simulated
values of RB and CV for a particular variance estimator v were computed as

RB = 100× 1
B

B
∑

b=1

vb −M SE
M SE

(7)
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and

CV =

√

√

√

√

1
B

B
∑

b=1

(vb −M SE)2/M SE , (8)

where vb is the variance estimate of v for the b -th simulated sample.

TABLE 5
Comparison of variance estimators for ty .

Method RB % CV Coverage(95%)
LSEP 1.35 0.1871 94.4
LCOM 1.03 0.2179 94.1
QSEP1 1.26 0.1874 94.9
QCOM1 1.98 0.2320 94.5
QSEP2 0.97 0.1839 94.7
QCOM2 1.21 0.2248 94.4

TABLE 6
Comparison of variance estimators for ÒN.

Method RB % CV Coverage(95%)
LSEP 1.66 0.1290 94.6
LCOM 1.98 0.1806 94.0
QSEP1 1.35 0.1295 94.7
QCOM1 1.13 0.1749 94.4
QSEP2 1.53 0.1276 94.7
QCOM2 1.59 0.1723 95.0

From Tables 5 and 6, we clearly see that the relative bias of the population total ty

and population size ÒN is small and positive. It is also clear that the highest RB for these
estimators is 1.98 whereas the smallest RB is 0.97. In terms of probabilities of coverage,
the two estimators perform comparably and well in the sense that both estimators pro-
duce a coverage very close to 95 %. From Table 7, it is clear that the RB for the ratio
estimator ty/tx is smaller and negative. In terms of absolute values the smallest RB for
the ratio estimator is 0.08 and the highest RB is 0.86. The coverage probabilities of Table
7 are within an acceptable range though they are a little less than those for the estimators
ty and ÒN .

From Tables 5, 6, 7, it is clear that the coefficients of variation for ty and ty/tx are
very similar. It is worth noting that the CV for the separate bootstrap methods is a
little smaller than that of the combined bootstrap methods for all estimated population
quantities. From Table 6, the CV for the separate bootstrap methods of the estimator
N̂ is the smallest and varies around 0.13.
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TABLE 7
Comparison of variance estimators for ty/tx .

Method RB % CV Coverage(95%)
LSEP -0.45 0.1917 93.6
LCOM 0.86 0.2279 93.4
QSEP1 -0.21 0.1899 93.5
QCOM1 -0.27 0.2351 93.4
QSEP2 -0.15 0.1879 93.4
QCOM2 0.08 0.2238 93.8

6. CONCLUSION

The bootstrap variance estimation technique is very useful for assessing the quality of
estimators in complex surveys, particularly when non linear estimators are involved.
This paper has proposed two new algorithms that generate efficiently resampling designs
using the reshuffled Sobol sequences in multiple frame surveys. The methods perform
well and comparably with already established bootstrap methods in Lohr (2007).

Future work will involve the use of quasi random numbers to generate without re-
placement subsamples for multiple frame surveys as well as establishing formally their
asymptotic properties.
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SUMMARY

In this paper, we present two new algorithms that use the shuffled Sobol sequence to generate
the bootstrap resampling designs in multiple frame surveys. We investigate the performance of
the proposed algorithms in a simulation study using a three-overlapping frame setup design. The
samples were selected independently from the frames using a stratified simple random sampling
design. The performance of the proposed methods is comparable with the already established
ones such as the Lohr-Rao bootstrap methods for multiple frame surveys in terms of relative per-
centage bias, coefficient of variation, and empirical coverage probabilities of 95 percent confidence
interval.

Keywords: Multiple frame surveys; Bootstrap variance method; Shuffled Sobol sequence.


