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1. INTRODUCTION

There is nothing more reassuring in the uncertainty of our everyday life than 
the possibility of measuring something: an operation which renders objective our 
sensory perceptions of the world by overcoming the ambiguous divide between 
personal assumption and the reality of phenomena. In fact, if everything that can 
be measured exists, the factual existence is made evident and transmissible by a 
measure, that is by a number which, in its meagre essence, appears to leave no 
room for subjective interpretations. But what is measure? If we are still today 
looking for an answer it is because a univocally accepted general definition does 
not exist. 

In effect, one of the most curious aspects of this topic is indeed the existence 
of innumerable and often contradictory definitions of measure and of a measur-
able phenomenon. As we move forward in time, the more we approach this age 
of high scientific and technological specialisation, the more do these definitions 
confront new realities which cannot be compared with known models. 

Paradoxically, it is the very physics of our century, heir of the knowledge which 
historically provided the foundation of metrology, that developes a conception 
both rigorous and also strongly reductive of measure as an operation which al-
lows the determination of how many times a physical quantity contains another 
physical quantity of reference, homogeneous with it, assumed as a standard unit, 
(International Committee of Weights and Measures, 1950-60). It is a definition 
both limited and inadequate because it excludes from the measurable a lot of 
phenomena, which since immemorial time have been the object of quantitative 
analysis, some of which are in fact widely dealt with in physics manuals, such as 
acoustics, thermodynamics and photometry. Besides, which role should be as-
signed to the operation of counting: perhaps that of the first quantitative criterion 
devised by man to understand the world. Which meaning should be attributed to 
the probability of an event: the last refined rational strategy for the measurement 
of the uncertainty of events, the indeterminism intrinsic to natural phenomena. 
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2. PLATO’S ART OF MEASUREMENT

One has to look back long in time in order to rediscover the cultural breadth 
of a science yet to be constructed and free from preconceptions of the technol-
ogy on which it would then be founded. One has to return to the speculative 
power of the most ancient philosophy, in which all the knowledge of the world is 
cogently represented by the art of measurement. One must read again Plato when 
Socrates says, in the Protagoras (357 a, b): “Well, my fellow men, as the salvation 
of our life has shown itself to be in the correct choice of pleasure and pain, of the 
many and the few, of the greater and the smaller, of the farther and the nearer, 
will it not be shown with equal clarity to be, above all, art in measurement, be-
cause it is, in fact, a search for excess and for defect and reciprocal equality. Not 
only this, but will such an art of measurement not necessarily result in an art and 
a science” [Our translation] 

What did Socrates’ friends measure, and what had their fathers measured:  
Everything. The ancient architects, by building for the Gods the majestic temples 
which history still preserves for us, offered to man the perfection of their meas-
urements. By observing the birds, the augurs measured the uncertainty of events, 
and the astrologers foresaw - again by measuring - the motion of celestial bodies. 

In ancient Egypt the art of measurement had already reached refined levels: the 
quadrant and the astrolabe were already known and used for determining the po-
sitions of stars, the hourglass for measuring time, and the gnomon for following 
the passage of the seasons. Astronomical knowledge and the measurement in-
strumentation for the forecasting of mysterious events laden with esotericism, 
such as eclipses, gave the caste of priests who guarded their secrets a great politi-
cal and social power. 

Thus, the use of numbers and of geodetic apparatus were tools of the trade for 
the ancient engineers, just as notched, rules and scales for the measure of lengths 
and weights were commonplace for shopkeepers and merchants. And money was 
already the measure used for the relationship of exchange for goods and services. 

3. PYTHAGORAS RELATIONSHIP

Historiography claims that Pythagoras discovered the numerical proportions 
relating to sound after having observed that the pitch produced by the beating of 
an anvil with four hammers varied inversely with the weight of the hammer.  
Thus goes the tale recounted by the mathematician Nicomachus of Gerasa (I-II 
century) in his ‘Enchiridion Harmonices’ [Our translation, from Nicomaque de 
Gèrase, Manuel d’Harmonique et autres texts relatifs a la Musique, par Ch. Em. 
Ruelle, Paris, Bauer éd.. 1881, p. 19-22]: 

“27. One day while he [Pythagoras] was out walking, completely absorbed in his 
thinking and meditations suggesting various combinations, trying to imagine an aid 
for the ear, one that would be certain and without error, such as the eye has in the 
form of the compass, ruler or dioptre, and touch has in the form of scales or the in-
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vention of measures, he found himself passing, by pure fortuitous coincidence, a 
blacksmith’s forge, and very clearly heard iron hammers beating the anvil and pro-
ducing a range of sounds which, the  though mixed, were completely consonant 
with one another, except for one pair alone. He recognised among them the conso-
nance of diapason (octave), diapente (fifth) and diatessaron (fourth). Regarding the 
intermediate interval between fourth and fifth, he realised it was by itself dissonant, 
but on the other hand complementary with the greater of these two consonances. 
28. Overjoyed, he entered the forge as though a god had granted his wish and, by 
means of varied experiments, after having realised that it was the difference in 
weight that caused the difference in sound and not the strength of blacksmith’s 
blows, nor the shape of the hammer, nor the shifting of the iron being beaten, he 
measured with great accuracy the weight of the hammers and their impulsive 
strengths, and after finding the latter perfectly identical, he went home. 
29. (...) He hung four ropes on some nails, similar in quality, number of threads, 
thickness and torsion, and to each of these hung a weight, fixed at the lower end. In 
addition he made the ropes of exactly the same length and then by hitting the ropes 
together two by two, he respectively identified the said consonances which varied 
for each pair of ropes.” 

There follows in the Nichomachean text the detailed formulation of the nu-
merical relationships calculated by Pythagoras between the length of the ropes 
and the weights hung on them. 

It is of little consequence how much truth lies in such a narration. It is, though, 
true that the Pythagorean school saw in those relationships the essence of a uni-
verse guided by the rigorous harmony of numbers. For the first time the concept 
of number detaches itself from the numbered entity, the geometric shape from 
the physical object: numbers and shapes become abstract concepts, and the rela-
tionships among them are valid beyond their concrete verification in the real 
world: they become relationships between ideas. Thus, art becomes science and 
measure finds its first axiomatic relationships. 

4. GALILEO’S INSTRUMENTS

One has, in fact, to pass through natural Platonic philosophy, through the 
myth of a natural science which finds its highest expression in the mathematics of 
forms and reaches its extreme rationalisation by removing any meaning from the 
capricious contingency of phenomena, in order to assign to the idea-number the 
task of liberating speculative thought from comparison with reality. This evolu-
tion of Platonic philosophy finds in Euclidean geometry its most refined expres-
sion and the first realised axiomatic base of spatial measurements. 

Perhaps the taking root over the centuries, albeit with ups and downs, of as-
tronomy and of geodesy as guiding sciences and models of reference for many 
other areas of research is due to this very interaction between the art of meas-
urement and the rational abstraction of forms. 

However, the decline of classical civilisation and the subsequent weakening of 
philosophical thinking leads to the consolidation of the subordinate role of sci-
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ence in relation to philosophy, with the latter mainly dealing with theology and 
alchemy. This period of European scientific backwardness which stretches till the 
XVII century, and which was only completely resolved by the Galilean revolu-
tion, had not however interrupted the development of business, commerce and 
industry. Technology continued to progress: watches substituted hourglasses, 
craftsmen built machines and tools of greater and greater complexity. The arrival 
of the pendulum, binoculars, and the precision scale acted to disseminate the 
Galilean imperative of measuring the measurable in mechanics,  astronomy and 
chemistry, paving the way for modern science. 

With Galileo, the practice of measurement in fact leaves the environment of 
commerce and craftsmanship, in which it had been enclosed as a practical al-
though refined activity of daily life, when experimental science, discovered in  
the art of measurement  an essential aid. Neither Galileo’s measures (lengths, 
weights and times) nor his mathematical games of combinatorial calculus were of 
use in constructing buildings or trading goods, but were instead useful in translat-
ing into simplified formal models the phenomena of nature. If the great book of 
nature is written in mathematical language - as Galileo thought - it belongs to sci-
ence the task of searching for the numerical relationships between observed 
quantities.

It is in this spirit that the Royal Society of London, since its foundation in 
1662, took on the task of defining a universal measure of length related to the 
dimension of a pendulum, the oscillation of which lasts exactly one second. The 
arm of the pendulum would have taken the role of the unit of measurement of a 
universal spatio-temporal system. A fascinating and ambitious aspiration, but one 
which did not take into account the different effects of gravity on the terrestrial 
globe and which made the lengths of pendula of equal oscillation times vary. 

Once the myth of a universal measure had been abolished, then science turned 
to the perfecting of instruments and to the search for measures suitable for the 
new phenomena which were becoming established in modern thought. Thus, the 
concept of measure as a speculative process to gather knowledge about the world 
had in any case been lost. 

5. KANT DISTINCTION

As it is known, the first attempt to give a global vision of the measurable was 
due to Kant (Kritik der reinen Vernunft, 1781) when, starting from the principle 
that "...the pure scheme of quantity as a concept of the intellect is the number" he 
differentiates between extensive quantities, which are susceptible to decomposi-
tion into parts, and intensive quantities unitarily perceived as sensations describ-
able by ordered relationships. 

In the Analysis of Principles, under the title “Systematic Representation of all 
the Synthetic Principles of the Pure Intellect”, Kant defines as extensive all the 
“quantities wherein the representations of parts makes possible the representation 
of the whole...” and as intensive, the quantities “...as unit, and in which multiplic-
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ity can be represented only by approximating to negation”. The firsts are the an-
swer to the question “how big is a thing” and they refer to representable phe-
nomena in space and time by that very synthesis by which space and time are de-
termined. The seconds express “a certain degree of effect on the senses” and they 
refer to all the phenomena in which “reality is the object of sensation”. 

The firsts correspond to additivity criteria and the units of elementary measure 
add up, the seconds are only susceptible to graduation in relation to the limit con-
dition of absence of the very phenomenon. “Hence - states Kant - between the 
reality in the phenomenon and its negation there is a continuous chain of many 
possible intermediate sensations...”. “Hence any sensation,...has a grade, that is an 
intensive quantity, ...and between the reality and the negation there is a continu-
ous chain of possible realities”. 

Nowadays the Kantian differentiation between extensive and intensive quanti-
ties no longer finds many reasons to continue to exist, even though in the 1920s 
it provoked one of the most fertile debates amongst metrologists. Coherently, 
physicists continued to state that a quantity belongs to scientific research if, and 
only if, it may be described by a metric ordering. That is, by a unit sample meas-
ure on which to operate additivity, even if by these rigid definitions a vast class of 
measures, lacking immediate additivity and tied to psychophysical research and 
then emerging, were excluded by scientific research. Perhaps this traditional op-
position was due to an excessive mistrust of social, behavioural and psychological 
sciences which tried to find a first quantitative foundation in psychometrics. And 
perhaps it has been this very attitude which stimulated quantitative psychology to 
give itself a highly formalised order, till it reached in those years a very high level 
of precision, which is today largely lost. 

Nevertheless, the most orthodox scientific bodies are still inclined to reject any 
definition of an extensive quantity which does not respect the requisite of additivity, 
leaving to the fringes of science the so-called intensive quantities linked to photo-
metric, audiometric, psychometric, and biochemical measurements which still have a 
long measurable tradition. It suffices to think of the ordinal scales of mineral hard-
ness, nowadays highly refined and with their own specific theory of errors,  of so 
many non-additive chemical measurements aimed at the identification of the class to 
which an element belongs, or of the nuclear measures based on the counting of cer-
tain pulses: here, in fact, the measurement unit appears to be missing. 

6. AXIOMATIC FORMULATION

The paradigms of classical mechanics which claimed to describe reality only in 
terms of mass, length, time, and force have led to the erection of barriers within 
science by creating a hierarchic order among disciplines on the basis of a totally 
arbitrary criterion of comparison: the presence or absence of additive measures. 
However, those ambiguous distinctions are destined to die out, superseded by the 
more recent axiomatic formulation of the theory of measure and by the more 
general epistemological assessments of the categories of the measurable. 
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A different way of tackling the problem turns, in fact, to the axiomatic ap-
proach to the foundation of measure, that is to the criteria associated to the as-
signment of a number to a quantity independently from pre-set techniques for 
such assignments (D.H. Krantz, et al. 1971). 

Among the numerous attempts to reduce to axioms the systems of relation-
ships between the physical world and metrical description, the simplest formula-
tion of a system of measures, and one which is apparently less contradictory, is 
based on the concept of numerical representation of a physical structure con-
ceived as theoretical model, i. e. as  a collection of elements linked by one or 
more empirical relationships. 

As an example of an assiomatic formulation of the concept of measure, we 
have: (i) A  is a class of objects, (ii)  is a relational structure and (iii)  is a logic 
operation of concatenation. Besides it is possible to define, for example, an order 
preserving additive function , by means of a homomorphism that maps (i) A

into R0 (a set of real numbers), (ii)   in >, and (iii)  in +, while maintaining all 
the properties of the reference set. 

Given the conditions of equivalence (transitive, symmetric, reflexive) and strict 
order and the association, monotonicity and Archimedean axioms, a measure  is 
determined by constructing a corresponding linkage of the relations inside the 

empirical structures and the relations among numbers, such that, for a, b, c A,
we have: 

a ~ b  (a) = (b)

a b ~ c  (a) +  (b) =  (c)

where ~ denotes the condition of equivalence. 
The uniqueness theorem is essential for this formulation: given two measures 

, ' homomorphic on the same empirical structure, the function f ( ) = '  iden-
tifies the admissible transformation among measures and allows to define proce-
dures of equivalent measurements. In the class of extensive attributes, given a 
comparative quantity k, chosen as a standard, unit, and a quantity a, with measure 

 (a), the ratio f (a) / f (k)  is univocally determined whatever k. In fact, if ' is a 

numerical function built on a standard unit a k it must be  (a) / (k) = '(a) / 
'(k), that is '(a) =  (a) by setting  (k) = , with  > 1. So the similarity 

transformations '(a) =  (a) are admissible and define scales of univocally de-
termined ratios. 

On the contrary, when the admissible transformation is of the kind '=  + ,
with  > 0, an interval scale is obtained where the following ratio stays invariant: 

'( ) '( ) ( ) ( )

'( ) '( ) ( ) ( )

a b a b

c d c d

Here we have two arbitrary choices - the origin and the measurement unit - 
and their variation leads to similar transformations. 

Generally, a classification of measures in terms of admissible transformations 
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requires a non ambiguous identification of the measurement procedure selected. 
When ratio scales are defined, we often think that only the choice of the compari-
son unit must be taken as free, but other non restricted aspects could have been 
neglected. In setting up a standard sequence, when, for example, a length a is 
measured, it is usual to count the number n of elementary units k, which are 
needed to define a by introducing the operation of addition. 

However, this is an arbitrary choice as well. In fact, the elementary units could 
be multiplied according to exponential kn. But the transformed function ' = kn is 
not additive and it allows only an homomorfism in (R0, >, ), where  is now 
any binary operation instead of addition. 

These examples illustrate the need for further thoughts on arbitrary assump-
tions which are implicit in the numerical measurement scales. Furthermore, there 
is a need to verify the admissibility of some transformations. Non-admissibility 
implies non-equivalence of measurement procedures, hence the non comparabil-
ity of the results. What remains invariant is the set of empirical relationships, 
some of which are intuitively taken or assumed as axioms. 

Hence, any phenomenal occurrence at the moment of observation and meas-
urement is ideally described by a model, whith is developed from a conventional 
set of invariant qualitative relations which are defined a priori. These axioms are 
collections of qualitative empirical laws and as such they must be interpreted and 
verified by homomorphic numerical structures from which to draw concrete sub-
sets of quantitative measurements. 

The deeper analysis of the epistemological foundations of the theory of meas-
ure in modern scientific research carried out by philosophers of the Circle of Vi-
enna - Mach and Carnap in particular - and by the major exponents of Berlin 
neopositivism - Reichenbach and Hempel - has put at the base of a correct defini-
tion of measure every procedure of classification which allows the assignment of 
an object to a class and the construction within the class of a relation of order, 
not necessarily a quantitative one, linked for instance to evaluations of the kind 
“more than...”, “less than...”, that is relations of precedence or coincidence. So 
before any measure comes a representation of the world in phenomenal catego-
ries linked to one another by a set of relationships which can be referred back to 
numerical language. 

It is therefore convenient to further enlarge the concept of measure so as to 
include not only the rational quantities, where there is a standard unit that can be 
added up, but also the phenomenic entities which are representable by numerical 
structures not bound to additivity: for instance, relationships of classification, or-
dering or, generally, any indirect instrumental measure. 

The translation process of a natural event to a number is always a product of 
the mind, a theoretical construction. On the basis of this knowledge a fruitful ex-
change started between science and technology, one which has often made am-
biguous the difference between measure and measured quantity, starting an op-
erational concept of metrology expressed in the Bridgemanian operationalism 
(Bridgeman, 1927). Besides, the interaction between a physical phenomenon and 
an instrument of measure, or similarly, between a social phenomenon and the 
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procedure of observation, has always threatened the nineteenth century preten-
sion of objectivity of an observation independent of the observer. 

The risk however is of falling into an operative concept that favours measure-
ment over the phenomenon, by simply attributing the qualification of quantity to 
all that is measurable. An operational criterion to which Bridgeman himself would 
have been opposed. The essence of measurement is always characterized by a 
semantic link between an idealisation of reality and a symbolic mathematical 
structure. In every measure a model is always implicit; even in the simplest meas-
ure of length an abstraction takes place from a three dimensional reality to an 
ideal class of unidimensional objects. 

7. THE ROLE OF ERRORS

The formal systems of measure, however axiomatised, cannot be evaluated 
solely in mathematical terms.  The internal coherence and elegance of the theory 
must be compared with the measurable reality. Hence, any judgement regarding 
the validity of a system of measure cannot avoid taking into account also empiri-
cal criteria. The majority of the definitions of measure and of the theories devel-
oped around those definitions have ignored the fundamental role of error, trivi-
ally reduced to the status of technical problem of the metrologists or handed over 
to the statisticians to be dealt with. However, it is the very refining of techniques 
of measurement, combined with the results of the advanced development of the 
physical sciences, that has demonstrated how the immanence of error cannot be 
eliminated and how it becomes more noticeable the greater the precision of the 
instruments and the degree of rigour involved. But which type of error is it? 

The first and more neglected component of uncertainty derives from the in-
adequacy of the model in describing the reality to be measured. This may happen 
when the theoretical framework is weaker (social and economic phenomena), but 
it appears frequently even in the more advanced areas of physics (subatomic 
physics and astrophysics). 

It must be said that this first neglected component historically relegated to the 
less developed sciences, appear often to be more aware of uncertainties due to 
problems that have been badly posed, models which have been mispecified. 
Every empirical system can be described by a set of numerical relations if, and 
only if, it is reduced to a model through a simplification of the phenomenically 
relevant relationships: for example, keeping certain parameters constant and over-
looking others, or modifying the form of relation (making linear or orthogonalis-
ing the equations) or, again, introducing a convenient variable, nearly always of 
the stochastic type, with the important job of representing "the rest of the world" 
not explicitated by the model. The measurements which result have a strictly lim-
ited field of validity linked to the model: when they are extended outside this am-
bit, they generate unexplained variability. 

The second source of error, which has long since stopped troubling research-
ers, relates to the variability of results generated by the contingent characteristics 
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of the experimental situation. The awareness of instrumental error which can cre-
ate a difference between the results  obtained from a measurement repeated  sev-
eral times on the same object has given rise, from the 18th century,  to a consoli-
dated theory founded on refined probabilistic solutions. 

The third component of error is induced by the instrument and, in macro-
scopic phenomena, can be summarised in the so-called systematic distortion pre-
sent in an instrument which is not well balanced; this is a disturbing factor which 
is amply discussed in the techniques for quality control and the reliability of in-
strumental apparatus, in which statistical methodology has an essential role. In 
this field, however, a new component of indeterminacy comes from more com-
plex instruments in the phase of transition from the instrumental signals to the 
fields of numbers. 

As long as the measures are length, weight and mass, the problem of corre-
spondence between signal and measurement apparently does not arise. When the 
signal is photoelectric, ecographic, Doppler, ... the conversion of the signal, which 
is not solely a technical matter, leads to new logical difficulties regarding the crite-
ria for assigning a (not necessarily biunivocal) correspondence, from the field S of 
signals to the field R0 of real numbers, consistent with all the empirical relation-
ships to be described. 

This problem, raised by physicists, is also of great methodological relevance for 
the social sciences. For instance, when one uses a statistical indicator of a popula-
tion’s welfare, is the researcher really certain to have built a syntactically consis-
tent chain in the passage between the model of reality, field of signals and nu-
merical structure? The answer should make one very cautious in accepting those 
measures as objective, that is comparable, and hence subjectively transferable. 

In the microscopic and submicroscopic phenomena of physics and biology, 
the effect of the instrument has an altogether different impact and finds its most 
synthetic formulation in the uncertainty principle. As Heisenberg wrote: that 
which derives from an observation is only a function of probability. 

The possibility of making a systematic error more or less irrelevant, and to use 
probabilistic models for handling accidental error, does not change the nature of 
random variables of every quantity described by a measurement. The fundamental 
consequence of this knowledge, which has conquered sectors of physics which are 
more traditionally deterministic, is the necessity of expressing a measurement by an 
interval. This is also true for the ideal measurement, the one virtually without error, 
in a deterministic conception of the world. This conceptual position challenges one 
of the fundamentals on which the definition of measurement is based - strongly 
sustained by Bertrand Russell - that is the biunivocal correspondence between 
physical structure and numerical structure. i.e. that in microphysics we cannot 
measure at the same time the position and the velocity of a given unit. 

A measurement, therefore, is no longer an exact value, rather it is an interval of 
uncertainty, an unavoidable moment of indeterminacy. So here is another myth 
which fades. According to modern theoreticians of measure, for every measure-
ment one can only associate an interval of indifference within which there is no 
reason to choose one value rather then another. This band of uncertainty should 
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not be seen as a term of residual error, which is not susceptible to further correc-
tion, but as a logical definition of measurement in a physical system. 

The need to approximate measurements with intervals of indifference takes on 
a different meaning if it is seen as an operational limitation, or if it becomes an 
intrinsic factor of the definition of measure. To admit an "intrinsic" uncertainty 
means that no object can be expressed by a sole number, that a "true" measure-
ment does not exist, that measurement is the numerical approximation of an in-
terval, that error must not be seen any longer as a difference from a "true" and an 
observed value, but as a disparity between measurements. The mathematics to be 
used is no longer the algebra of real numbers, but instead the algebra of sets. To 
establish a class of measurement means therefore, establishing a class of compati-
ble intervals, which however do not possess the property of transitivity. In order 
to give a mathematical justification to these new concepts, there is an attempt at 
extending the transitive property to "sets of classes of mutually compatible val-
ues". This means that different extensive measurements can correspond to inter-
vals of compatible and therefore equivalent measurements, so admitting the exis-
tence of  measurements which are logically equal for diverse objects. This is a 
contradiction in reference to the classical theory of continuous measures in which 
we have been versed, which does not admit the conceptual possibility of identical 
values; the eventual equality must be attributed exclusively to numerical approxi-
mation. But this is certainly not a contradiction for statistics, which has founded 
its methods on equivalent classes of measurement (eterograde intervals) and ho-
mogeneous classification of different objects. 

A solution from the world of statistical methodology could be given involving 
the intervals of uncertainty and the sets of indifference in random numbers to be 
treated in the language of probability. Physics has had to borrow from this new syn-
tax to give a coherent description of many microprocesses, giving rise to statistical 
physics in which probability has assumed a privileged semantic role (Woolf, 1961). 

8. INTENSIVE QUANTITIES

A family of atypical measures, developed covertly and unable to emerge be-
cause charged with not having a supporting theory and moreover with not having 
objective quantities to be translated into numbers, has managed, in our century, 
to impose its own results on scientific research. These measures concern quanti-
tative evaluations of (intensive) quantities based on the relationship between 
physical stimulus and sensorial answers, in which the so-called personal equation 
unavoidably intervenes. Quantitative physiology and psychometrics have reached 
a formal theoretical framework sometimes able to offer hints to the physical sci-
ences for dealing with unresolved photometric questions, and to the social sci-
ences in order to propose new methods of analysis. In this context, a prevalent 
role is taken by the subjective component, conditioned by the assimilation of ex-
perience, which removes from the quantitative relationships the requisite of inde-
pendence and hence of additivity, typical of instrumental observations. 
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In the 17th century Galilei had already animated a lively debate regarding the 
best criterion for evaluating an unknown quantity by anticipating the difference 
between instrumental errors of measurement and sensorial errors of valuation: a 
differentiation of which science has become aware of in dealing with the quantita-
tive determination of external reality, where the components of error arising from 
the instruments of observation overlap with those arising from the observer’s 
senses. The first results, experimentally based on an idea advanced by Fechner 
(1851), who proposed a logarithmic relationship between  subjective valuation 
and intensity of stimulus, were subsequently taken up again and integrated by the 
first methodologists of statistics (Galton, McAlister, 1879) who was able to for-
mulate the theoretical distribution of these specific sets of measure and their re-
lated errors. On the basis of these results two fundamental lines of research have 
been developed: quantitative physiology, thanks to which we are today able to 
measure hearing capacity or  pain level,  times of reaction or sensitivity to drugs, 
etc., and the behavioural sciences, which started at the beginning of the century 
with the first metric scales of intelligence and have reached the most sophisti-
cated aptitude scales based on the analysis of factors (L.L. Thurstone, 1927) and 
similarity scales for the study of behaviour (C.H. Coombs, 1964) where the pro-
cedures of measurement are strictly linked to the statistical techniques of informa-
tion synthesis. In all of these researches, the a priori existence of an interpretative 
model which is able to create a correspondence between a numerical system and 
a set of phenomenic relationships is essential.  

If measurement has played an essential role in science, the search for an expla-
nation of the fundamental axioms on which it is based has always attracted the 
interest of scientists. One of the recurrent temptations when an attribute has to 
be measured is to avoid the empirical and theoretical obstacles set by the search 
for  a fundamental quantity to which to correlate the others, by substituting it 
with some simple physical quantity that one believes to be strongly linked with 
the attribute under scrutiny: the family income in place of welfare, the hours of 
fasting in place of hunger, the number of correct answers in place of intelligence, 
... . These indirect measures may be appropriate when deeper analyses are not 
available, and the initial variables to be interpreted are sufficiently known; how-
ever to accept them as objective definitions of nonanalysed concepts is a mis-
placed form of operationism. 

9. PROBABILITIES

One cannot conclude this brief tour of the complex world of measurement 
without questioning the role to be assigned to probability. Almost always ne-
glected by metrology, it is dealt with separately, even in the sacred books of meas-
urement theory. However, since the origins of modern science, probability has 
established itself in its dual fundamental aspect of measuring an event and meas-
uring the measurement error. As an essential instrument of astronomers and 
physicists of the 18th and 19th centuries in their search for the most plausible es-
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timation of an unknown quantity, probability has found in the theory of errors a 
highly formalised,  autonomous methodological body, a basic knowledge for all 
the quantitative disciplines. Equal to this has been its importance in the explana-
tion of natural and social phenomena. 

Since the natural sciences of matter and life have adopted an indeterministic ex-
planation of phenomena, wherein constants change with the changing of the refer-
ral system and measurements become stochastic variables, the only rational answer 
is the statistical distribution of the probabilities of the possible states of a system 
(Scardovi, 1981). Well-established in this new way of dealing with science, probabil-
ity as a measure of random events has become an essential component of statistical 
mechanics and genetics of populations. And in the behavioural sciences it has of-
fered models of rational choice in situations of uncertainty: one thinks, to give an 
example, of the reduction of economic strategy to the theory of games (von Neu-
mann e Morgenstern, 1944). This theory, founded on the principle of utility, in 
which probability becomes an intrinsic element of measurement, has its roots in the 
19th century concept of measurement of marginal utility and in the Paretian’s intui-
tion of the ordered scale of preferences in consumer behaviour; and subsequently it 
is found in the formalisation of decision procedures, whose most relevant axioms 
deal with the maximisation of the expected utility (Savage, 1954). 

From this decision-making vision of knowledge, typical of the forties, com-
bined with the most recent informatic conquests in the elaboration of large quan-
tities of information, so-called expert systems devised for the generation of chains 
of rules aimed at the solution of diagnostic problems have emerged. 

Attempts to measure the reliability of a diagnosis, in the widest meaning of the 
term, through the recombination of various types of uncertainty internal to the 
mental process simulated by an expert system have led to original proposals. But 
the most coherent and most consolidated solution for treating uncertainty - sup-
ported by three centuries of experience - remains probability: like a length or a 
temperature, writes Lindley (1987), it too can be expressed in standard units. 

Today probability permeates all the sectors of research which are required to 
have criteria of induction and decision, and has rightly entered into the most 
complex systems where a measurement must be assigned to each and every un-
certainty. Why then is there so much reticence in considering the probability of 
an event as of the same epistemic nature as the estimation of force, length or 
weight; and why should the measurement of a probability give rise to so many 
more philosophical and methodological controversies than the measurement of a 
mass, of a sound, of a velocity or any other attribute? 

Perhaps the answer is only a psychological one and must be read on a psycho-
sensorial scale. The thickness of uncertainty does not possess the same solidity as 
our writing desk. It is better then, as suggested by Plato, to return to the ancient 
classics and rediscover in a philosophical speculation, new ways in the “art of 
measurement”, free from the bonds of an irritating formalisation. 
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RIASSUNTO

Il concetto di misura da Platone alla statistica moderna. Arte del vivere o principio dell’intelletto? 

L’articolo si propone di dimostrare che il concetto di misura si è affermato nella sua 
dimensione statistica fin dalle origini del pensiero: dalle speculazioni filosofiche di Platone 
ai rapporti armonici di Pitagora. Per arrivare a una definizione moderna della misura oc-
corre attendere il XVII secolo, quando Galilei ha fatto uscire la misura dalle botteghe e 
dai mercati per riportarla agli onori della scienza sperimentale. E’ ancora con Galilei che 
comincia a delinearsi la nozione di errore che conoscerà il suo pieno sviluppo nei secoli 
successivi. Infine, nel XIX secolo, Kant distingue le grandezze estensive dalle grandezze 
intensive. Se queste ultime non hanno la “materialità” richiesta dalle scienze fisiche, non-
dimeno anch’esse possono essere misurate. Nasce la psicometria, gli orizzonti della ricerca 
si allargano e la ricerca scientifica ammette che tutto può essere misurato, compresa 
l’incertezza, il rischio, l’indeterminazione. La scienza si arricchisce quindi della probabilità 
come strumento potente di misura del vasto mondo dell’incerto. 

SUMMARY

The concept of measure, from Plato to modern statistics. Art of living or intellectual principle? 

This paper purports to show that the statistical concept of "measure" was advanced 
right from the origins of western thought: from the philosophical speculation of Plato, to 
the harmonic numerical relationships of Pythagoras. We must wait until the sixteenth cen-
tury for a modern definition, when Galileo takes measurement away from the domain of 
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shops and merchants and brings it to the realm of experimental science. It is Galileo too, 
who begins to delineate the statistical theory of errors which was further developed in the 
following centuries. Finally, in the nineteenth century, Kant distinguishes between exten-
sive and intensive quantities; the letter do not possess the materiality which is required by 
physics, but which can still be measured. And so "psycomentrics" was conceived; the ho-
rizons of research were widened, and science recognised that everything can be measured, 
uncertainty, risk and indeterminismess too. So, science conquers probability as a powerful 
means of measurement in the vast world of uncertainty. 


