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1. INTRODUCTION

In lifetime analysis, monotone failure rate models play a vital role to study the reliability
characteristics. The most popular monotone hazard rate models are Weibull, gamma,
exponentiated exponential, etc. The gamma distribution did not receive the desired at-
tention of the analyst due to its non-closed form of the cumulative distribution function
(CDF). Therefore, several generalizations based on gamma distribution have been devel-
oped, viz generalized gamma distribution, exponentiated generalized gamma distribu-
tion, etc. The exponentiated gamma distribution (EGD) is one of these. The genesis of
exponentiated gamma distribution is as follows. Let a variable Z ∼ Gamma(α,β) and
F (z,α,β) is the CDF of random variable Z with shape parameter α and scale parameters
β. If we consider α= 2 and β= 1, then the new variable Y = [F (z, 2, 1)]θ has CDF of
exponentiated gamma distribution with shape parameter θ. The resulting probability
density function (PDF) and CDF of the EGD are written by

f (y,θ) = θye−y �1− e−y (1+ y)
	θ−1 ; y > 0,θ > 0 (1)

and
F (y) =

�

1− e−y (1+ y)
	θ ; y,θ > 0 (2)

respectively.

The EGD was firstly studied in detail by Shawky and Bakoban (2006). It may be
noted here that, the EGD is parsimonious in parameters and hence, simple to use. The
other advantage is that it has various shapes of hazard function for different values of the
shape parameter θ. It has an increasing hazard rate when θ > 1

2 and takes bathtub shape
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for θ < 1
2 . The applicability and work related to the EGD have been discussed by sev-

eral authors, see Shawky and Bakoban (2008), Singh et al. (2011), Shawky and Bakoban
(2012), etc.

The inverse transformation method of baseline variable is one of the most popular
way to obtain the inverted version of any lifetime distribution. Generally, the gener-
alized inverted family of distribution possesses the property of upside down bathtub
(UBT) hazard rate. Another remark with such distributions is parsimonious in param-
eter and simple to use. For example, inverse exponential distribution (IED) (Lin et al.,
1989), inverse Lindley distribution (ILD) (Sharma et al., 2015). Recently, Yadav et al.
(2019) introduced the inverted version of xgamma distribution, etc. All the above-cited
models exhibit the property of UBT hazard rate. The counterpart to bathtub hazard
rate is the three-phase situation in which the failure rate initially increases, then becomes
essentially constant, and ultimately decreases. This failure rate function, which we will
term UBT shaped. Also, the detailed description of different types of hazard rate in-
cluding UBT may be seen in Domma et al. (2017). Here, the same transformation has
been used to introduce the inverted form of EGD. If a random variable Y has EGD(θ)
with PDF given in (1), then the random variable X = 1

Y is said to follow the inverted ex-
ponentiated gamma distribution (IEGD). The CDF (3) and PDF (4) of IEGD are given
by the following equations

F (x,θ) = 1−
�

1− e−
1
x

�

1+
1
x

��θ

x > 0,θ > 0 (3)

and

f (x,θ) =
θ

x3
e−

1
x

�

1− e−
1
x

�

1+
1
x

��θ−1
x > 0,θ > 0. (4)

The primary objective of this article is to propose a new lifetime distribution called
as IEGD and study its related distributional characteristics. The proposed distribution
belongs to the inverted family of distributions and shows the UBT type hazard rate and
is the member of family of heavy-tailed distribution. Further, the classical and Bayesian
estimation procedures have also been discussed to estimate the parameter of IEGD. In
classical estimation, the maximum likelihood estimation (MLE), the maximum product
spacing estimation (MPSE), least square and weighted least square estimation (LSE &
WLSE), Cramer-von-Mises estimation (CVME) have been used. The Bayes estimate of
the parameter is computed by assuming gamma prior under squared error loss function.
To the best of our knowledge thus so far, no attempt has been made to introduce the
inverted version of EGD. The present study is desired to fill-up this gap.

The rest of the article is organized as follows. Section 1 describes the introduction
part related to the considered problem. In Section 2, we have studied different statistical
properties and associated measures of IEGD. Different classical methods of estimation
of the parameter of IEGD have been considered in Section 3. The Bayes estimation has
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been discussed in Section 4. The simulation study has been carried out to compare the
different obtained estimators in Section 5. Empirical application based on a real data set
is discussed in Section 6. Finally, concluding remarks are given in Section 7.

2. SOME STATISTICAL PROPERTIES

In this section, different statistical properties related to the new distribution have been
derived in the following subsections.

2.1. Reliability and hazard functions

The reliability and hazard functions are the two fundamental elements to study the char-
acteristics of the time to event data. The term reliability is used in engineering field and
it gives the probability that equipment survives at least time t . The hazard function of
particular phenomenon describes the nature of failure rate associated with the lifetime
of the specific equipment. The reliability and hazard functions of IEGD are given in the
following.

• The reliability function R(x) can be easily obtained by using the relation R(x,θ) =
1− F (x,θ). Hence,

R(x,θ) =
�

1− e−
1
x

�

1+
1
x

��θ

. (5)

• The hazard function h(x) is the instantaneous failure rate and is obtained as

h(x) =
f (x,θ)
R(x,θ)

=
θ

x2
�

xe
1
x − x − 1

� . (6)

• The reverse hazard function H (x) is obtained as

H (x) =
f (x,θ)
F (x,θ)

=
θe−

1
x

�

1− e−
1
x

�

1+ 1
x

��θ−1

x3
n

1−
�

1− e−
1
x

�

1+ 1
x

��θ
o

. (7)

• The cumulative hazard function for IEGD is defined by

C h(x) =− log R(x,θ) =−θ log
�

1− e−
1
x

�

1+
1
x

��

. (8)

See Figure 1 for the reliability function plot and Figure 2 for the hazard function
plot.
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Figure 1 – Reliability function plot of IEGD for different values of θ.

Figure 2 – Hazard function plot of IEGD for different values of θ.
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2.2. Shape of the distribution

The shape of the distribution can be traced either graphically or mathematically. It
meditate the idea whether the distribution is symmetric or skewed. The graphical in-
vestigation for the proposed PDF is presented in Figure 3.

Figure 3 – Density plot of IEGD for different values of θ.

From the figure, it is clear that the proposed distribution shows the pattern of the
right-skewed model. Also, using Equation (6), we can have an idea about the nature of
its hazard rate, we have plotted the shapes of hazard rate for the various value of the
parameter θ in Figure 2. This figure shows that the proposed distribution has UBT
type hazard rate. This can also be verified mathematically by using the result of Glaser
(1980). Glaser proved that if η′(t )> 0 for all t ∈ (0, t0), and η′(t0) = 0 and η′(t )< 0 for
all t > t0 and satisfying lim

t→0
f (t ) = 0 then distribution has upside down bathtub failure

rate (UBT), where η(t ) is equal to − f ′(t )/ f (t ) and f ′(t ) is the first order derivative of
density function f (t )with respect to t . In case of our proposed distribution, we see that

η(t ) =
3
t
− 1

t 2
+

(θ− 1)e−
1
t

t 3
�

1− e−
1
t

�

1+ 1
t

�� (9)

and

η′(t ) =
−3
t 2
+

2
t 3
+(θ− 1)

t e
1
t − 3t 2e

1
t + 3t 2+ 2t

(t 3e
1
t − t 3− t 2)2

. (10)
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Since, the above equation is not in explicit form to get the solution, so we use a sim-
ulation study and it was seen that for t0 = 0.562θ approx, η′(t ) > 0 for all t ∈ (0, t0),
and η′(t0) = 0 and η′(t ) < 0 for all t > t0. Also, from Equation (4) we can verify that
lim
x→0

f (t ) = 0 (because rate of convergence of exponential function is more than the al-

gebraic function). Hence, the proposed distribution is right skewed distribution having
UBT shape of hazard rate and it appears to be more useful for medical and reliability
data.

2.3. Tail area property

The heavy tail area property of any probability distribution can be detected by the cri-
terion suggested by Klugman et al. (2012). It is to be noted that the distributions which
do not have all their power moments finite; and some others to those distributions that
do not have a finite variance. Consequently, the arithmetic mean of the distribution is
obtained by solving the following integration

E(x r ) =
∫

θ

x r f (x,θ)d x =
∫ ∞

0

θ

x2−r
e−

1
x

�

1− e−
1
x

�

1+
1
x

��θ−1
d x.

It has been verified that the above integral is the divergent integral, hence the moments
of the proposed distribution do not exist consequently proposed distribution is heavy-
tailed distribution. Also, following the ideas of Nair et al. (2013), Foss et al. (2011) and
Marshall and Olkin (2007) that the ratio of the hazard function of the proposed distri-
bution to the another heavy tailed distribution (usually exponential distribution taken)
tend to infinite when x→ 0. Thus, the ratio obtained is

γ (x) =
1

x2
�

xe
1
x − x − 1

� (11)

lim
x→0

γ (x) = lim
x→0

1

x2
�

xe
1
x − x − 1

� →∞.

Hence, the tail of the proposed distribution is heavier than the exponential distribution
and in this way it possesses heavy tailed property.

2.4. Quantile function

Suppose X is a random variable observed from (4). The quantile function Q(p) is de-
fined by; F [Q(p)] = p is the root of equation

�

1+
1

Q(p)

�

e−
1

Q(p) = 1− (1− p)
1
θ (12)
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after some simplification; the above equation can be written in the following form

−
�

1+
1

Q(p)

�

e−
�

1+ 1
Q(p)

�

=
�

(1− p)
1
θ − 1

�

e−1. (13)

From the above equation, we see that−
�

1+ 1
Q(p)

�

e−
�

1+ 1
Q(p)

�

is the Lambert W function

with real argument
�

(1− p)
1
θ − 1

�

e−1. The Lambert W function is the multi-valued
complex function defined as the solution of equation W (z)exp(W (z)) = z where z is
the complex number. Thus, we have

W
¦�

(1− p)
1
θ − 1

�

e−1
©

=−
�

1+
1

Q(p)

�

. (14)

After simplification and using the property of negative Lambert W function,

W−1

¦�

(1− p)
1
θ − 1

�

e−1
©

=−
�

1+
1

Q(p)

�

(15)

it is computed as

Q(p) =
�

−W−1

¦�

(1− p)
1
θ − 1

�

e−1
©

− 1
�−1

. (16)

If p = 0.5, we get the median of IEGD, given below

M d =
�

−W−1

¦�

(0.5)
1
θ − 1

�

e−1
©

− 1
�−1

. (17)

2.5. Coefficient of skewness and kurtosis

The different quantile can be computed by Equation (16). Therefore, the quantile based
coefficients of skewness and kurtosis can be defined by using Bowley (1920) and Moors
(1988) results. Thus, Bowley’s coefficient of skewness is defined as

B =
Q(3/4)+Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)

and the Moors coefficient of kurtosis is given as

M =
Q(3/8)−Q(1/8)+Q(7/8)−Q(5/8)

Q(6/8)−Q(2/8)
.

The graph of the skewness and kurtosis for the variation of the parameter are given
in Figure 4.
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Figure 4 – Skewness and kurtosis for different values of θ.

2.6. Stochastic ordering

The comparative behaviour of two random variables are shown by using the theory of
stochastic ordering. At first the concept of stochastic ordering was proposed by Shaked
and Shanthikumar (1994). Let X and Y are the two random variables with CDFs FX
and FY respectively, then then X is said to be smaller than Y in

• stochastic order (X ≤s t Y ) if FX (x)≥ FY (x) for all x;

• hazard rate order (X ≤h r Y ) if hX (x)≥ hY (x) for all x;

• mean residual life order (X ≤m r l Y ) if mX (x)≥ mY (x) for all x;

• likelihood ratio order (X ≤l r Y ) if
�

fX (x)
fY (x)

�

decreases in x.

From the above relations, we analyzed that

(X ≤l r Y )⇒ (X ≤h r Y )⇓ (X ≤s t Y )⇒ (X ≤m r l Y ).

The proposed distribution is also ordered with respect to the strongest likelihood ratio
ordering as shown in the following Theorem.

THEOREM 1. Let X ∼ f (θ1) and Y ∼ f (θ2). If θ1 > θ2, then (X ≤l r Y ) and hence
(X ≤h r Y ), (X ≤m r l Y ) and (X ≤s t Y ).
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PROOF. According to the definition of likelihood ratio order first we obtain the

ratio
�

fX (x)
fY (x)

�

i.e.

Ψ =
fX (x)
fY (x)

=
θ1
x3 e−

1
x

�

1− e−
1
x

�

1+ 1
x

��θ1−1

θ2
x3 e−

1
x

�

1− e−
1
x

�

1+ 1
x

��θ2−1

=
θ1

θ2

�

1− e−
1
x

�

1+
1
x

��θ1−θ2

.

Therefore,

Ψ
′
=
θ1(θ1−θ2)
θ2y3

e−
1
x

�

1− e−
1
x

�

1+
1
x

��θ1+θ2−1
. (18)

If θ1 >θ2, then Ψ
′
> 0, hence (X ≤l r Y ) i.e the ratio decreasing in x. The remaining

statements can be established by same way. 2

2.7. Stress-strength reliability

Here, the expression of stress-strength reliability parameter R= P [Y <X ] is computed
for IEGD. It measure the component reliability when it is subjected to random stress Y
and has strength X . In this context, R can be considered as a measure of system perfor-
mance and naturally arise in electrical and electronic systems. For more details about
stress-strength reliability the readers may see, Kotz et al. (2003). Let X ∼ I EGD(θ1)
and Y ∼ I EGD(θ2) denotes the strength-stress random variable with parameter θ1,θ2
respectively. The parameter R for IEGD is obtained as

R= P [Y <X ] =
∫ ∞

x=0

∫ x

y=0
f (x,θ1) f (x,θ2) d x d y

=
∫ ∞

x=0

θ1

x3
e−

1
x

�

1− e−
1
x

�

1+
1
x

��θ1−1 �

1−
�

1− e−
1
x

�

1+
1
x

��θ2
�

d x.

After simplification, the expression for R is obtained as

R= P [Y <X ] =
θ2

θ1+θ1
. (19)

2.8. Order statistics

Suppose x1, x2, . . . , xn be the independent random sample from (4) and x1:n < x2:n <
· · · < xn:n denotes the corresponding order statistics. Then the PDF fr (xr :n) and CDF



348 A. S. Yadav

Fr (xr :n) of r t h order statistics xr :n is computed by using the following equations

fr (xr :n) =
n!

(r − 1)!(n− r )!
F r−1(xr :n)[1− F (xr :n)]

n−r f (xr :n). (20)

Using Equations (3) and (4) in above equation, we get

fr (xr :n) =
n!

(r − 1)!(n− r )!
θe−

1
xr :n

x3
r :n

¨

1−
�

1− e−
1

xr :n

�

1+
1

xr :n

��θ
«r−1

×
�

1− e−
1

xr :n

�

1+
1

xr :n

��θ(n−r )+θ−1
(21)

and

Fr (xr :n) =
n
∑

i=r

�n
i

�

F i (xr :n)[1− F (xr :n)]
n−i

n
∑

i=r

n−i
∑

j=0

�n
i

�

�

n− i
j

�

(−1) j F i+ j (xr :n).

(22)

Using Equation (3) in Equation (22) we have

Fr (xr :n) =
n
∑

i=r

n−i
∑

j=0

�n
i

�

�

n− i
j

�

(−1) j
¨

1−
�

1− e−
1

xr :n

�

1+
1

xr :n

�

,
�θ
«i+ j

(23)

respectively.

Similarly the distribution of x(1) = min(x1, x2, · · · xn) and x(n) = max(x1, x2, · · · xn)
are obtained by assuming r = 1 & r = n, respectively.

3. DIFFERENT CLASSICAL METHODS OF ESTIMATION

In this section, we discuss different estimation procedure for estimating the unknown
model parameters of the proposed model. These methods are presented below.

3.1. Maximum likelihood estimation

Let x1, x2, · · · , xn be the random sample of size n from density function (4). The likeli-
hood function for density function (4) is written as

L(θ) =
n
∏

i=1

f (xi ,θ)

=
θn

∏n
i=1 x3

i

e−
∑n

i=1
1
xi

n
∏

i=1

�

1− e−
1
xi

�

1+
1
xi

��θ−1

.

(24)
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Hence, log-likelihood by ignoring constant is written as

ln L(θ) = n lnθ− 3
n
∑

i=1

ln xi −
n
∑

i=1

1
xi
+(θ− 1)

n
∑

i=1

ln
�

1− e−
1
xi

�

1+
1
xi

��

. (25)

Thus, for MLE of the parameter θ̂ml is obtained by solving the equation L
′(θ) = 0 under

the condition L
′′(θ)|

θ̂ml
< 0, where L

′(θ) is the first derivative of L(θ) w. r. t. θ. After

simplification, the MLE of the parameter is obtained as

θ̂ml =−
n

∑n
i=1 ln

h

1− e−
1
xi

�

1+ 1
xi

�

i . (26)

Therefore, using above equation, we see that

L
′′
(θ)|

θ̂ml
=− 1

n

�

n
∑

i=1

ln
�

1− e−
1
xi

�

1+
1
xi

��

�2

< 0,

which insure the existence of MLE of the parameter for IEGD.

3.2. Maximum product spacing method of estimation

An alternative method of estimation of MLE is maximum product spacing estimation
(MPSE) method. At first, the MPSE method was used and is discussed by Cheng and
Amin (1983). Coolen and Newby (1990) mentioned that MPS method possess similar
properties as MLE. Recently, Singh et al. (2014) used this method and illustrated its
beauty. In this method, the likelihood function is defined as the differences between
two consecutive CDFs and is given by

L
′
(α,θ) = n+1

√

√

√

√

n+1
∏

i=1

ζi (27)

such that
∑n

i=1 ζi = 1 and ζi =
h

1− e−
1

xi−1

�

1+ 1
xi−1

�

iθ
−
h

1− e−
1
xi

�

1+ 1
xi

�

iθ

The MPS estimates of the parameter θ are obtained by maximizing the above equa-
tion w. r. t. the parameter.

3.3. Ordinary and weighted least square estimation

In the theory of classical estimation method, least square estimation (LSE) and weighted
least square estimation (WLSE) method are a conventional method to obtain the esti-
mate of the parameter as is introduced by Swain et al. (1988). They used LSE and WLSE
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method to estimate the parameters of a Beta distribution. The LSEs of the unknown
parameter of IEGD has been obtained by minimizing the residual sum of the square,
where residual is defined as the differences of theoretical CDF and empirical CDF:

LSE =
n
∑

i=1

�

F (xi ,θ)−
i

n+ 1

�2

. (28)

Using Equation (4) in the above equation, we get

LSE =
n
∑

i=1

�

1−
�

1− e−
1
xi

�

1+
1
xi

��θ

−
� i

n+ 1

�

�2

. (29)

The least square estimators of the parameter θ is obtained by minimizing (21) w. r. t
θ and the weighted least squares estimates (WLSE) of the unknown parameter can be
obtained by minimizing the following function

W LSE =
n
∑

i=1

W
′

i

�

1−
�

1− e−
1
xi

�

1+
1
xi

��θ

−
� i

n+ 1

�

�2

, (30)

where W
′

i is the weight function at the point i and is taken as

W
′

i =
1

Var(F (xi ))
=
(n+ 1)2(n+ 2)

i(n− i + 1)
.

3.4. Cramer-von-Mises estimation

Cramer-von-Mises estimation (CVME) method is proposed and used by MacDonald
(1971). This method is based on minimum difference between empirical and cumulative
distribution functions. See Choi and Bulgren (1968), Boos (1981) for more details about
this method. The CVM estimator of the parameter is obtained by minimizing

CV =
1

12n
+

n
∑

i=1

�

F (x(i))−
2i − 1

2n

�2

. (31)

Hence, from Equation (3) and (31), we get

CV =
1

12n
+

n
∑

i=1

��

1−
§

1− e−
1
x

�

1+
1
x

�ªθ
�

− 2i − 1
2n

�2

. (32)

Now, differentiating Equation (32) respect to the parameter and equating to zero we get
n
∑

i=1

�

Wi (θ)−
2i − 1

2n

�

W
′

i (θ) = 0, (33)

where W
′

i (θ) is the first derivatives of CDF of IEGD. Now, again, the above equation
cannot be solved analytically, hence the some numerical technique may be applied.
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4. BAYESIAN ESTIMATION

Here, the Bayes procedure has been discussed to estimate the unknown parameter of
the proposed distribution. It is to be noted that the Bayes procedure is posterior based
inference and hence the posterior distribution of the parameter θ is derived under the
assumption of gamma prior. Since, no conjugate prior exist for IEGD thus, gamma
prior is taken under consideration. The considered prior is very flexible and can also be
converted to the non-informative prior. The prior density for θ is given by

g (θ)∝ θ p−1e−qθ ;θ > 0, (34)

where p, q are the hyper-parameters of the considered prior and are assumed to be
known. Now, using likelihood Equation (24) and prior (34), the posterior distribution
is obtained by

p(θ|x) =
L(x|θ) g (θ)

∫∞
θ=0 L(x|θ) g (θ)dθ

=
θn+p−1e−qθ∏n

i=1

h

1− e−
1
xi

�

1+ 1
xi

�

iθ

∫∞
θ=0θ

n+p−1e−qθ∏n
i=1

h

1− e−
1
xi

�

1+ 1
xi

�

iθ
dθ

.

(35)

Here, we assume squared error loss function (SELF) to obtain the Bayes estimate of the
parameter θ. Let α̂ is the estimate of α, then SELF is defined as

L f (α, α̂) = (α̂−α)2.

It is mentioned that under SELF, posterior mean is the Bayes estimate of the param-
eter

θ̂b = Eθ(θ|x) =

∫∞
θ=0θ

n+p e−qθ∏n
i=1

h

1− e−
1
xi

�

1+ 1
xi

�

iθ
dθ

∫∞
θ=0θ

n+p−1e−qθ∏n
i=1

h

1− e−
1
xi

�

1+ 1
xi

�

iθ
dθ

, (36)

provided the above expectation exist. The above expectation involve the ratio of two
integrals; thus the explicit solution of the above equation is not possible. Thus, we used
Lindley’s approximation method to obtain the Bayes estimates of the parameter θ.

4.1. Lindley’s approximation method

One of the most efficient technique to extract the Bayes estimate from the ratio of two
integral was suggested by Lindley in year of 1980, see Lindley (1980). Thus, by applying
this approximation technique, the Bayes estimator of θ is given by

θ̂b l = θ̂ml + τ̂θσ̂θθ+
1
2
σ̂2
θθL̂θθθ, (37)
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where

∂ 2L
∂ θ2

= Lθθ =−
n
θ2

,
∂ 3L
∂ θ3

= Lθθθ =
2n
θ3

σθθ =−
�

1
Lθθ

�

, τθ =
a− 1
θ
− b .

All the above derivatives are evaluated at the point θ̂ml . If n is sufficiently large then
α̂b l → α̂ml .

5. SIMULATION STUDY

In this section, the performances of the estimators obtained by the different methods of
estimation are investigated using Monte Carlo simulation study. The simulation is per-
formed for different values of sample size, in particular it is taken as n = 15,30,45,60,90,
120,&150 when θ = 0.75,2. In simulation-based result θ̂ml , θ̂m p , θ̂l s , θ̂w l s , θ̂cv repre-
sents the estimates obtained by method of MLE, method of MPSE, method of LSE,
method of WLSE, method of CVME. θ̂b l 1, θ̂b l 2 denote the Bayes estimate under infor-
mative prior and non- informative prior respectively. Since, the classical estimators are
not explicitly obtained, thus optim() function has been used solve them. The Bayes
estimate is computed by using Lindley’s approximation method. The values of hyper
parameters are chosen such that the prior mean accurately matches with true beliefs
and variance is very less. The average estimates of the parameter and corresponding
mean square errors (MSEs) are reported based on 3000 replications in Table 1. From
this extensive simulation study, it has been remarked that the Bayes estimator under
informative prior is more precise as compared to all estimators however under non-
informative priors the Bayes estimator is almost same as the MLE and also ensure the
consistency property of the estimators, i.e., the MSEs of each estimator are decreasing
when n increases. In case of large sample MLE, MPS and Bayes estimators are more
or less the same. Further, among the classical estimation methods (MLE, MPSE, LSE,
WLSE & CVME), the maximum product spacing estimation method provides the more
efficient result as compared to the rest. The graph of the MSEs of each estimators under
θ= 0.75, θ= 2 are displayed in Figure 5.
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TABLE 1
Average estimate and corresponding mean square error (second row).

θ n θ̂ml θ̂m p θ̂l s θ̂w l s θ̂cv θ̂b l 1 θ̂b l 2

0.75

15 0.80370 0.79911 0.79269 0.78819 0.80147 0.73286 0.80370
0.05150 0.04579 0.06756 0.06283 0.06906 0.04103 0.05150

30 0.77315 0.77217 0.76480 0.76386 0.76937 0.73018 0.77315
0.02210 0.02111 0.02802 0.02572 0.02842 0.01968 0.02210

45 0.76724 0.76680 0.76228 0.76134 0.76536 0.73525 0.76724
0.01392 0.01351 0.01807 0.01631 0.01826 0.01278 0.01392

60 0.76120 0.76097 0.75590 0.75670 0.75820 0.73547 0.76120
0.01029 0.01007 0.01316 0.01070 0.01325 0.00970 0.01029

90 0.75790 0.75779 0.75538 0.75169 0.75691 0.73904 0.75790
0.00645 0.00636 0.00832 0.00783 0.00836 0.00621 0.00645

120 0.75535 0.75530 0.75303 0.75466 0.75418 0.74026 0.75535
0.00496 0.00491 0.00650 0.00569 0.00653 0.00482 0.00496

150 0.75394 0.75390 0.75307 0.75495 0.75400 0.74134 0.75393
0.00380 0.00377 0.00504 0.00440 0.00506 0.00373 0.00380

2

15 2.14454 1.95683 2.09878 2.08512 2.12157 2.05925 2.14453
0.35057 0.27753 0.46629 0.42728 0.47600 0.13167 0.35057

30 2.08556 1.97094 2.05404 2.04752 2.06601 2.06359 2.08556
0.15851 0.13505 0.21161 0.18967 0.21447 0.10993 0.15851

45 2.05516 1.97043 2.03625 2.02928 2.04431 2.04606 2.05516
0.09431 0.08417 0.12482 0.11230 0.12618 0.07576 0.09431

60 2.03848 1.97103 2.01560 2.01083 2.02166 2.03359 2.03848
0.06994 0.06464 0.09131 0.08163 0.09192 0.05984 0.06994

90 2.03243 1.98354 2.01777 2.01207 2.02182 2.03000 2.03242
0.04433 0.04132 0.05998 0.05279 0.06030 0.04007 0.04433

120 2.03322 1.99442 2.01468 2.01113 2.01773 2.03149 2.03321
0.03687 0.03423 0.04927 0.04334 0.04947 0.03424 0.03687

150 2.02109 1.98905 2.00732 2.00139 2.00974 2.02018 2.02109
0.02625 0.02484 0.03735 0.03245 0.03745 0.02480 0.02625
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Figure 5 – Mean square error of the estimators obtained by simulation.

6. REAL DATA ILLUSTRATION

In this section, we consider a real data to show the suitability of IEGD. The considered
real data set represents the 46 repair times (in hours) for an airborne communication
transceiver, taken from Chhikara and Folks (1977). The data set is given below:

0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1, 1, 1, 1, 1.1, 1.3, 1.5, 1.5,
1.5, 1.5, 2, 2, 2.2, 2.5, 2.7, 3, 3, 3.3, 3.3, 4, 4, 4.5, 4.7, 5, 5.4, 5.4, 7, 7.5, 8.8, 9, 10.3,
22, 24.5.

The average repair times for an airborne communication transceiver is 3.607 hours with
standard deviation 4.9444. Also, the coefficient of skewness and kurtosis are 2.8883 and
11.8025 respectively. The values of the skewness is positive with kurtosis greater than 3,
which indicates that the considered data set is positively skewed with leptokurtic shape.

The fitting of the data to the proposed model has been checked by using one sample
Kolmogorov-Smirnov (KS) goodness of fit test based on the following null hypothesis

H0 : Data comes from IEGD

The value of the KS statistic and corresponding p-value based on MLE of unknown
parameter are obtained. Following the idea of Ristić et al. (2018), we also applied the
parametric bootstrap technique and simulated B = 1000 samples of size n = 46 from the
IEGD and then again computed KS value and p-value using the parametric bootstrap
MLE. The same is reported in Table 2, and it is observed that p-value for usual MLE
and bootstrap MLE is greater the α = 0.05 (level of significance), which indicates that
the strong evidence to accept the null hypothesis. Further, the empirical cumulative
distribution function (ECDF) plot is also plotted for usual MLE and bootstrap MLE, in
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which the empirical and theoretical CDFs are very close. Hence, we may conclude that
the proposed model is well fitted to the considered data set, see Figure 9.

Further, the summary of the data set has been presented through box plot (see Fig-
ure 6) and it is observed that the some outlier values are presents in the considered data
set, which may indicate the value due to heavy tailed property of the phenomenon from
which the data came. The nature of failure rate for the considered real data sets has been
examined by considering total time on test (TTT) plot and it is noticed that data set
possess UBT type hazard rate (see Figure 7). The estimated density and hazard plots are
also plotted for the MLE obtained for the considered data and MLE for the paramet-
ric bootstrap samples, see Figure 8. The classical and Bayes estimates of the unknown
parameter are also computed for the considered real data set, see Table 3.

●
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25

Figure 6 – Box plot of the considered data set.

TABLE 2
The value of the KS test and p-value.

Model Estimate KS value p-value
I EGD 0.3925 0.1415 0.3160
I EGDB 0.3725 0.1328 0.3910
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Figure 7 – TTT plot for data set.
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Figure 8 – Estimated plots for the considered data set.

TABLE 3
Estimate for the real dataset obtained by different methods of estimation.

θ n θ̂ml θ̂m p θ̂l s θ̂w l s θ̂cv θ̂b l 2

2

46 0.39259 0.38919 0.33517 0.35346 0.33647 0.39259
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Figure 9 – Empirical CDF plot for the considered data set.

7. CONCLUSIONS

In this article, the inverted version of the exponentiated gamma distribution, named as
IEGD has been proposed as a heavy-tailed UBT shaped probability model. The related
distributional properties are derived and presented in respective sections. The shape of
the distribution has been traced graphically as well as mathematically and it is observed
that the proposed model accommodate the nature of the upside down bathtub hazard
rate which is very useful to analyze the medical and engineering data. Secondly, the esti-
mation of the unknown parameter of the IEGD model has been addressed by different
classical (MLE, MPSE, LSE, WLSE & CVME ) methods of estimation and Bayes estima-
tion method. The Bayes estimates of the parameter are obtained with the gamma prior
under SELF by applying Lindley’s approximation method. The Monte Carlo simula-
tion study has been performed to investigate the performances of the obtained estima-
tors under both setups, and it is remarked that the Bayes estimator under informative
prior is superior to that of other classical estimators while under non-informative prior
the Bayes, MLE, and MPS estimators are same. Among all traditional estimation meth-
ods MPSE method outperforms than others. Lastly, a real data set has been considered
to demonstrate the applicability of the proposed model and estimation procedures.



358 A. S. Yadav

REFERENCES

D. D. BOOS (1981). Minimum distance estimators for location and goodness of fit. Journal
of the American Statistical association, 76, no. 375, pp. 663–670.

A. L. BOWLEY (1920). Elements of Statistics, vol. 2. PS King & Son, London.

R. C. H. CHENG, N. A. K. AMIN (1983). Estimating parameters in continuous univariate
distributions with a shifted origin. Journal of the Royal Statistical Society, Series B, 45,
no. 3, pp. 394–403.

R. S. CHHIKARA, J. L. FOLKS (1977). The inverse Gaussian distribution as a lifetime
model. Technometrics, 19, pp. 461–468.

K. CHOI, W. G. BULGREN (1968). An estimation procedure for mixtures of distributions.
Journal of the Royal Statistical Society, Series B, 30, no. 3, pp. 444–460.

F. P. A. COOLEN, M. J. NEWBY (1990). A Note on the Use of the Product of Spacings
in Bayesian Inference, vol. 9035 of Memorandum COSOR. Technische Universiteit
Eindhoven, Eindhoven.
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SUMMARY

In this article, we proposed and studied the inverted exponentiated gamma distribution (IEGD).
IEGD is obtained by considering the inverse transformation of exponentiated gamma variate.
This distribution has been motivated by the extensive use of the exponentiated gamma model in
many applied areas and also due to the fact that this new generalization provides more flexibility
to analyze real data with upside down bathtub (UBT) hazard rate. The shape of the distribution
has been traced mathematically and found that the proposed model is compatible with UBT haz-
ard rate models. The tail area property is also presented based on the idea of Marshall and Olkin
(2007) and it is concluded that the new model belongs to the family of heavy-tailed distributions.
Some other characteristics such as reliability, hazard, the quantile function, skewness and kurto-
sis, stochastic ordering, stress-strength reliability and order statistics have been explicitly derived.
The classical and Bayesian estimation procedures have been discussed to estimate the unknown
parameter of IEGD. The performances of classical and Bayes estimators are studied in terms of
average mean square error (MSE) by conducting Monte Carlo simulations. Finally, a real data set
with UBT type hazard rate is analyzed for the illustrative purpose of the study.

Keywords: Inverted exponentiated gamma distribution; Stochastic ordering; Order statistics; Dif-
ferent method of classical estimation; Bayes estimation.


