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1. INTRODUCTION

Let X be an absolutely continuous random variable with cumulative distribution func-
tion F (t ) = P (X ≤ t ) and survival function F̄ (t ) = P (X > t ) = 1− F (t ). Then, a
measure of uncertainty defined by Shannon (1948), is given by

ξ (X ) =−E (log f (X )) =−
∫

R
(log f (x)) f (x)d x, (1)

where f is the probability density function of X . Eq. (1) measures the expected uncer-
tainty contained in f about the predictability of an outcome of X , known as Shannon
differential entropy measure, and for the estimation of (1), we refer to Beirlant et al.
(1997), Lake (2009) and the references therein. Since − log f (X ) is a random variable
and ξ (X ) is the expectation of − log f (X ), Liu (2007) introduced a new statistical mea-
sure, the variance of − log f (X ), known as information volatility, given by

η(X ) = Var (− log f (X )) =Var (log f (X ))

= E (log f (X ))2− (E (− log f (X ))2

= E (log f (X ))2− (ξ (X ))2 . (2)

η(X ) measures the variability of the uncertainty associated in the probability distribu-
tion of X . That is, η(X ) measures how far the uncertainty of X is deviated from the
average uncertainty based on ξ (X ). We now compute η(X ) for some important relia-
bility models.
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EXAMPLE 1. When X follows equilibrium distribution with probability density func-
tion fE (x) =

F̄ (x)
µ where µ= E(X )<∞, then

ηE (X ) =
1
µ

∫ ∞

0

�

log F̄ (x)
�2

F̄ (x)d x −
�

ζ (X )
µ

�2

,

where ζ (X ) = −
∫∞

0

�

log F̄ (x)
�

F̄ (x)d x, the cumulative residual entropy (CRE) of X due
to Rao et al. (2004).

EXAMPLE 2. In survival studies, the most widely used semi-parametric model is the
proportional hazard rate model (PHM). When X and Y satisfy PHM,

hY (x) = θhX (x), θ > 0,

or equivaently
F̄Y (x) =

�

F̄X (x)
�θ

, θ > 0,

where F̄X (x), F̄Y (x), hX (x) =
fX (x)
F̄X (x)

and hY (x) =
fY (x)
F̄Y (x)

denote respectively the survival

functions and hazard rate functions of X and Y , with probability density function gY (x) =
θ
�

F̄X (x)
�θ−1

fX (x). Then the information volatility of Y is obtained as

η(Y ) = Var (− log g (Y )) =Var (log g (Y ))

= E (log g (Y )− E (log g (Y )))2

= η(X )+ (θ− 1)2− 2(θ− 1)C ov
�

log f (X ), log F̄ (X )
�

. (3)

In particular, when X follows standard exponential distribution, then

η(Y ) = η(X )+ (θ− 1)(θ− 3).

η(Y ) has a more meaningful explanation in a series system. Consider a series system consist-
ing of n components with i.i.d lifetimes Xi , i = 1,2, ..., n. Then the lifetime of the system
is Y = mi n(X1,X2, ...,Xn), with probability density function g = n(F̄ )n−1 f and survival
function Ḡ = (F̄ )n . Clearly, Xi and Y satisfy Cox PH model. Then the information volatil-
ity of the series system is η(Y ) in (3), where θ > 0 is replaced by n ≥ 1, an integer.

Liu (2007) showed that unlike the Shannon entropy ξ (X ), the information volatility
function η(X ) possesses some interesting mathematical properties. For example, η(X )
is invariant under linear transformation, while ξ (X ) is only shift invariant. Also, η(X )
is invariant under affine transformations, implying that it is independent of the mean
and variance of X while ξ (X ) is only independent of the mean. Therefore, if a family
of distributions can be described solely by the mean and the variance, then its η(X ) is a
constant for the whole family. For uniform distribution η(X ) = 0, normal η(X ) = 1

2 ,
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and for exponential distribution η(X ) = 1. Further, Liu (2007) proved that the Shannon
entropy, E (− log f (X )) is not a ’good’ statistic in the sense that it is not possible to find
discrete distributions converging weakly to the distribution in such a way that the cor-
responding Shannon entropies converge, whereas the information volatility η(X ) has
this convergence property. For more properties of η(X ), we refer to Liu (2007). Moti-
vated with these, in the present note we further study various properties of η(X ) in the
context of reliability modelling.

The paper is organized as follows. In Section 2 we introduce a dynamic informa-
tion volatility function and studied its basic properties. In Section 3, we prove some
ageing properties and characterizations based on it. Concluding remarks are reported
in Section 4.

2. DYNAMIC RESIDUAL INFORMATION VOLATILITY FUNCTION

In reliability and life testing, data are generally truncated, where one has information
about the current age of the component under consideration. Clearly, η(X ) in (2) is
not appropriate to measure the information volatility, and hence modify it to take the
current age into account so that the modified measure becomes a function of current
age t and thus dynamic. If X represents the lifetime of a component or system, then
dynamic residual information volatility (DRIV) function is defined as follows.

DEFINITION 3. For a non-negative random variable X , the dynamic residual infor-
mation volatility based on the residual random variable Xt = (X − t |X > t ), t > 0 is
defined as

η(t ) = η(X ; t ) =Var (− log f (Xt ))

= E (− log f (Xt ))
2− (E (− log f (Xt )))

2

=
∫ ∞

t

�

log
f (x)
F̄ (t )

�2 f (x)
F̄ (t )

d x − (ξ (t ))2 , (4)

where ξ (t ) = E (− log f (Xt )) = −
1

F̄ (t )

∫∞
t (log f (x)) f (x)d x + log F̄ (t ) denote the ex-

pected residual entropy of Xt due to Ebrahimi (1996) based on (1).

Eq. (4) further simplifies to

η(t ) =
1

F̄ (t )

∫ ∞

t
(log f (x))2 f (x)d x −

�

ξ (t )− log F̄ (t )
�2

. (5)

η(t ) in (5) measures the information volatility of the residual random variable Xt . Clearly,
when t → 0, η(t ) reduces to η(X ).
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From (5), we also have

η(t )≤ 1

F̄ (t )

∫ ∞

t
(log f (x))2 f (x)d x.

EXAMPLE 4. When X follows Uniform (a, b ), then η(t ) = 0.

REMARK 5. η(t ) = 0 for Uniform (a, b ) implies that dynamic information volatility
can be taken as a measure of variability in the random variables. In other words, deviation of
η(t ) from 0 produces volatility of random variables, thus η(t )moves away from 0 indicates
more volatile.

EXAMPLE 6. When X follows exponential with probability density function f (x) =
λe−λx ; x ≥ 0,λ > 0, we have η(t ) = 1= η(X ).

EXAMPLE 7. Suppose X follows Pareto II distribution with survival function F̄ (x) =
(1+ ax)−c ; x ≥ 0; c ,a > 0. Then η(t ) =

�

c+1
c

�2
> 1.

EXAMPLE 8. When X is beta (finite range) distribution with survival function F̄ (x) =
(1− p x)d , 0≤ x ≤ 1

p , p, d > 0,, we get η(t ) =
�

d−1
d

�2
< 1.

REMARK 9. It is to be noted that for the exponential distribution with parameter λ,
ξ (t ) = 1− logλ, independent of t , while η(t ) = 1, independent of both λ and t . In the
case of Pareto II given in Example 7 and beta (finite range) given in Example 8, ξ (t ) assume
log-linear functions of t involving both the parameters, however, η(t ) takes only constant
values in terms of its shape parameters. Thus, even if the residual entropy function of Pareto
II and beta densities takes log-linear behaviour, the dynamic residual information volatility
function η(t ) assumes constant values, and greater (less) than unity. Thus η(t ) provides as a
quantitative measure in determining the volatility of a random variable.

To illustrate the role of dynamic behaviour of information volatility (4), we propose
the following example.

EXAMPLE 10. Let X have Pareto I distribution with survival function F̄ (x) = xβ, x >
1, β> 0. Then the residual entropy function ξ (t ) = log t+ (β+1)

β − logβ and information
volatility function using (2), η(X ) = 0, while its dynamic information volatility based on
(4) becomes

η(t ) = (logβ+β log t )2+
�

(β+ 1)
β

�2
�

β2 (log t )2+ 2β log t + 1
�

−
2(β+ 1)
β

(logβ+β log t ) (β log t + 1)−
�

log t +
(β+ 1)
β

− logβ
�2

,

a function of t . The graph of ξ (t ) and η(t ) given in Figures 1, 2, and 3 depict the behaviour
of η(t ) and ξ (t ) functions with respect to different values of β for Pareto I model.
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Figure 1 – Plot of η(t ) for Pareto I model with β= 2.

0.0 0.2 0.4 0.6 0.8 1.0

−
5

−
3

−
1

0

t

η(
t)

η(t)   
ξ(t)   

Figure 2 – Plot of ξ (t ) and η(t ) for Pareto I model with β= 2.
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Figure 3 – Plot of η(t ) against ξ (t ) for Pareto I model with β= 0.75,2.

It is well known that Shannon entropy has additive property. That is, when the
random variables X and Y are independent, for the two-dimensional version of (1), we
have

ξ (X ,Y ) =−E (ln f (X ,Y )) = ξ (X )+ ξ (Y ).

The dynamic information volatility function possess the same property. When X and
Y are independent, for the two-dimensional version of (4),

ηXs ,Yt
(s , t ) =Var

�

− ln fXs ,Yt
(s , t )

�

= ηXs
(s)+ηYt

(t ).

In the following theorem we obtain the expression for η(X ) for a monotone trans-
formation.

THEOREM 11. If φ(.) is an increasing and differentiable function, then

η (φ(X ); t ) = η
�

X ;φ−1(t )
�

+Var
�

logφ′(X )|X >φ−1(t )
�

−2C ov
�

log fXφ−1(t )
(X ), logφ′(X )|X >φ−1(t )

�

, (6)

where fXφ−1(t )
(x) = f (x)

F̄X (φ−1(t ))
.
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PROOF. Let Y =φ(X ). Then fY (y) = fX (x)
�

�

�

d x
d y

�

�

�=
fX (φ−1(y))
φ′(φ−1(y)) . Using (4), η(t ) of Y

becomes

η(Y ; t ) =
1

F̄X (φ−1(t ))

∫ ∞

t

�

log
f
�

φ−1(x)
�

φ′ (φ−1(x)) F̄X (φ−1(t ))

�2 f
�

φ−1(x)
�

φ′ (φ−1(x))
d x

−(ξY (t ))
2

=
1

F̄X (φ−1(t ))

∫ ∞

φ−1(t )

�

log
f (y)

φ′(y)F̄X (φ−1(t ))

�2

f (y)d y − (ξY (t ))
2,

=
∫ ∞

φ−1(t )

�

log fXφ−1(t )
(y)− logφ′(y)

�2
fXφ−1(t )

(y)d y − (ξY (t ))
2, (7)

where ξY (t ) =
∫∞
φ−1(t )

�

log fXφ−1(t )
(y)− logφ′(y)

�

fXφ−1(t )
(y)d y is the entropy of Y . Now

expanding (7) and simplifying we obtain (6). 2

COROLLARY 12. When φ(X ) = aX + b , then (6) reduces to

η(aX + b ; t ) = η
�

X ;
t − b

a

�

− 2 logaξ
�

X ;
t − b

a

�

.

COROLLARY 13. For φ(.) defined in Theorem 11, it is yielded the following bound

η
�

X ;φ−1(t )
�

−η (φ(X ); t )≤ 2C ov
�

log fXφ−1(t )
(X ), logφ′(X )|X >φ−1(t )

�

.

3. PROPERTIES OF η(t )

In this section, we prove some results on certain ageing classes and characterizations of
distributions based on η(t ).

Differentiating (5) with respect to t gives,

η′(t )+ 2ξ ′(t )
�

ξ (t )− log F̄ (t )
�

= h(t )
�

η(t )− (log f (t ))2+
�

ξ (t )− log F̄ (t )− 1
�2− 1

�

. (8)

But due to Ebrahimi (1996), ξ ′(t ) = h(t ) (ξ (t )+ log h(t )− 1), then (8) further simplifies
to

η′(t ) = h(t )
�

η(t )− (ξ (t )+ log h(t ))2
�

. (9)
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DEFINITION 14. F̄ has increasing (decreasing) uncertainty of residual life IURL (DURL)
if ξ (t ) is increasing (decreasing) in t (Ebrahimi, 1996).

DEFINITION 15. F̄ has increasing (decreasing) residual information volatility IRIV
(DRIV) if η(t ) is increasing (decreasing) in t .

In some situations it will be difficult to compute the η(t ), however, bounds of the
same can be obtained. The following theorem proves to this effect.

THEOREM 16. If F̄ is IRIV (DRIV), then η(t )≥ (≤) (ξ (t )+ log h(t ))2.

COROLLARY 17. When F̄ is both IRIV (DRIV) and DFR (IFR), then we obtain a more
sharper bound than in Theorem 16, given by η(t )≥ (≤)1

PROOF. It has been shown that IFR (DFR) implies DURL (IURL) (Ebrahimi, 1996).
Therefore, when F̄ is DFR (IFR), ξ (t )+ log h(t )≥ (≤)1, hence the result. 2

REMARK 18. When F̄ is both IRIV and DRIV, η(t ) = 1, for the exponential distribu-
tion. Thus exponential distribution is the boundary of IRIV and DRIV classes.

THEOREM 19. IFR⇒ IRIV. But the dual class need not imply.

PROOF. When X is IFR, it is DURL and hence ξ (t ) + log h(t ) ≤ 1, then (9) be-
comes,

η(t )h(t )≤ η′(t ) (10)

implies that η′(t ) ≥ 0 as both η(t ) and h(t ) non-negative, thus IRIV. However, when
X is IURL, reversing the inequality in (10), which in turn gives η′(t )≤ η(t )h(t ). Since
η(t )h(t )≥ 0, one cannot conclude to DRIV. 2

The following is a characterization to η(t ) connecting some well-known lifetime
models.

THEOREM 20. The relationship X , η(t ) = C holds if and only if X follows Pareto II,
exponential and finite range distributions according as C ≥=≤ 1.

PROOF. Assume that η(t ) =C holds. Then using (7) we have

(ξ (t )+ log h(t ))2 =C ,

or equivalently
ξ (t )+ log h(t ) =K ,

where K = C
1
2 , is a characterization to the required models (see Sankaran and Gupta,

1999). 2
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The following theorem establishes a relationship for η(t ) in terms of variance of h(t )
and covariance function of h(t ) and entropy function H (X ).

THEOREM 21. For the random variable X , η(t ) admits the relationship

η(t ) = Var (log h(X )|X > t )+ 2Cov (log h(X ), H (X )|X > t )
+Var (H (X )|X > t )

= Var (log h(X )|X > t )+ 2Cov (log h(X ), H (X )|X > t )+ 1

where H (t ) = log F̄ (t ) denote the cumulative hazard rate of X .

PROOF. The proof directly follows from the relationship, log f (t ) = log h(t ) +
log F̄ (t ). 2

Next we introduce a new dynamic measure of information volatility based on the
conditional variance. It is defined as

DEFINITION 22. For a non-negative random variable X , the conditional information
volatility is defined as

ψ(t ) = Var (− log f (X )|X > t )
= E

�

(− log f (X )|X > t )2
�

− (χ (t ))2

=
1

F̄ (t )

∫ ∞

t
(log f (x))2 f (x)d x − (χ (t ))2,

where χ (t ) = E (− log f (X )|X > t ) = − 1
F̄ t (t )

∫∞
t (log f (x)) f (x)d x is the conditional

measure of uncertainty due to Sankaran and Gupta (1999).

REMARK 23. It is to be noted that the conditional information volatility functionψ(t )
coincides the dynamic information volatility function η(t ), since χ (t ) = ξ (t )− log F̄ (t ).

Now based on Definition 22, we prove the following characterization result to a
general family of distributions. LetA be a class of absolutely continuous non-constant
functions − log f (X ) with derivatives − f ′(X )

f (X ) defined on the range of X .

THEOREM 24. For − log f (X ) ∈A satisfying E
�

g (X )| f ′(X )
f (X ) |

�

<∞,

ψ(t ) = (ψ(X ))
1
2 E

�

−
f ′(X )
f (X )

g (X )|X > t
�

+(χ (X )−χ (t )) (χ (t )− log f (t )) (11)

if
χ (t ) = ξ (X )+ (ψ(X ))

1
2 h(t )g (t ) (12)
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or equivalently f (t ) satisfies the differential equation

f ′(t )
f (t )

=−
g ′(t )
g (t )

+
χ (X )−χ (t )

(ψ(X ))
1
2 g (t )

, (13)

holds, where g (.) is a positive Borel-measurable function satisfying the condition (12). Con-
versely, if there exists a function − log f (X ) for which f ′(t )

f (t ) 6= 0 for all t > 0 satisfying (11),
then (12) and (13) hold.

PROOF. The proof directly follows from Corollary 2.1 of Nair and Sudheesh (2010),
replacing h(X ) =− log f (X ). 2

4. CONCLUDING REMARKS

In this paper, we have introduced a dynamic version of the information volatility func-
tion proposed by Liu (2007) and studied its various properties. In particular, we have
investigated the usefulness of the measure in the context of the reliability theory. Bounds
and relationships with some important reliability ageing classes have been obtained.
Some characterization relationships between dynamic information volatility function
and certain lifetime distributions were also proved.
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SUMMARY

Liu (2007) discussed a new measure, known as the information volatility function to study the
variability of the uncertainty contained in a probability distribution. In the present paper, we
extend this concept to the residual random variable, a dynamic information volatility function
and study its usefulness in reliability modelling. Different ageing and characterization properties
of dynamic information volatility function are also derived.
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