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1. INTRODUCTION

In nonparametric testing problems, Lehmann (1953) introduces a class of alternatives,
that are defined as F(x)*, where F(x) is a continuous distribution function, and « is a
positive integer, for all —oo < x < 4+o00. Durrans (1992), without knowing Lehmann
(1953), extends the distribution of the nth largest order statistic, F(x)” say, to F(x)?,
where a > 0 is a real number, for all —oo < x < 4+00. More generally, for a continuous
distribution function F(x), with density f(x), the power distribution function H(x;a)
can be defined as H(x;a) = F(x)*, with den51ty h(x;a) = aF(x)*71 f(x), where a > 0,
for all —oo < x < +4o00.

Generalizing Lehmann (1953), Miura and Tsukahara (1993) study different classes of
continuous alternatives. Continuous power distributions have recently been considered
in Gupta and Gupta (2008), Pewsey et al. (2012) and Gémez and Bolfarine (2015). In
particular, Pewsey et al. (2012) and Goémez and Bolfarine (2015) propose and study the
basic theory for the likelihood-based inference in continuous power distributions.

Jones (2004) is relevant to further extensions and similarities, since important con-
tinuous distributions are obtained from the distributions of order statistics. Nadarajah
and Kotz (2006) can be considered for understanding the fact that continuous power
distributions are also studied as exponentiated distributions, with interesting achieve-
ments.

In this paper, a discrete counterpart of the continuous power distributions intro-
duced in Lehmann (1953) and Durrans (1992) is studied. Let F(x;6) be a discrete dis-
tribution function, that can be regarded as the original distribution, where € is a model
parameter, with values 0 in a space O, that is & € ©. The corresponding discrete power
distribution function H (x 0,a) can be obtained as F(x;0)%, by defining convenient
positive jumps F(x;;60)* — F_(x;;6)%, on the discontinuities {x; }, where « > 0, for all
—00 < x < +00. Inequalities in moments and distribution functions, based on a spe-
cific application of the Jensen’s inequality, for the original and power distributions, are
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studied. Such inequalities also allow the definition of the discrete intermediate distribu-
tions G(x; 0, a), that lie between an original distribution and a power distribution, for
all —oo < x < +o0.

Power and intermediate discrete distributions H(6,a) and G(6, @) are studied the-
oretically in detail. In particular, the uniform, the binomial, the Poisson, the negative
binomial, the hypergeometric distributions are examined, with the corresponding new
power and intermediate distributions. Power and intermediate distributions H(0, «)
and G(6,a) are flexble and suitable for analysing and fitting discrete data with various
degrees of variance, namely overdispersion and underdispersion, skewness and kurtosis,
as  varies, along @ > 0.

Problems of estimation for the power and intermediate distributions H(0,«) and
G(6,a) are considered using likelthood methods, with specific attention to maximum
likelihood estimation, information and asymptotics. Classic numerical optimization
tools for maximum likelihood estimation are also explored, by performing simulation
experiments.

Similar power approaches for the exponentiated geometric distribution can be found
in Chakraborty and Gupta (2015) and Nadarajah and Bakar (2016). Further conclusions
about the intermediate distributions can be obtained by following the results, from the
Conway-Maxwell Poisson and binomial distributions, in Shmueli e 4l. (2005), Daly and
Gaunt (2016), and Kadane (2016).

The theory is referred to Balakrishnan and Nevzorov (2003) and Johnson ez al. (2005),
for the basic definitions and general results in discrete distributions. See also Hardy
et al. (1951), Piskunov (1979), Spivak (1994), Shorack (2000), Pawitan (2001), and R Core
Team (2017), for other discussions and results.

2. DISCRETE POWER DISTRIBUTIONS

Let X be a discrete random variable (r.v.), with distribution function (d.f.) F(#), where
F(x;0) = Py(X < x), for all —oo < x < +00. Then, F() is nondecreasing and right
continuous, F(x;0) = F, (x;0), with F(—o0;6) = 0and F(+00;6) = 1. We then denote
by

AF(x;0)=F(x;0)—F _(x;0), (1)

the probability mass of F () at x. Let {x;} be the set of all discontinuities of F(£)), that
define positive jumps p;(0) = AF(x;;0), such that 3; p;(6) = 1. In particular, we have
the step function F(0) =X, p;(0)1[, - The sth moment about zero, of the r.v. X, is
s =EX°) =35 % pi(0).

We call {p;(0)}, the probability distribution on the values {x;} of the r.v. X, with
d.f. F(0), the original distribution. Following Lehmann (1953) and Durrans (1992), we
consider a parameter a for power functions, where @ > 0, that can be used for deter-
mining, from the d.f. F(8), the power distribution {r,(0,2)}, of a discrete r.v. Z, with
values {x;}, d.f. H(0,a) = 3, 7,(0,2)1; and sth moment w, = >; x{7,(0, ),

x;,00)?
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and the intermediate distribution {g;(0,2)}, of a discrete r.v. Y, with values {x;}, d.f.
G(0,2) =3, q,(0, )1}, ), and sth moment v, =37, x7q;(0, ).

For simplicity, we suppose that {x;} only contains nonnegative values, and, conven-
tionally, we consider x; so that x; | < x;.

We define by (1), the positive jumps

AF(x;;0,a)=F(x;;0)* —F _(x;;0)*. ()

From (2), we can determine the parametric power distribution {7;(0, @)}, with d.f. equal

to H(0,a) =3, r,(0,0)1 as

x;,00)?
7,(0,a)=AF(x;;0,a). (3)

so that 3. 7,(0,a) = 1.

Whereas a = 1, the power distribution {r,(6, )}, with d.f. H(0,), coincides with
the original distribution {p,(6)}, with d.f. F(6). We distinguish between the convex
case, @ > 1, and the concave case, 0 < a < 1, for the power distribution {7;(0,2)}, with
d.f. H(,a).

The moments w,, for the power d.f. H(,), cannot be expressed in closed form,
and must be calculated or approximated, as explicit sums.

2.1.  Power uniform distribution

The original uniform distribution {p,} is

pi=m", 4)

for {x;} ={0,1,...,m —1}.

The power uniform distribution {r;(«)} can be obtained from (3) and (4), for a given

a>0,as
ri(@)=(m™"i)* = (m~ (i = 1)), ®)
where 7 (a)=(m™)* and i =2,...,m.

In Figure 1, we consider an original uniform distribution {p;}, given by (4), with
m—1=20, and the power uniform distributions {7,()}, given by (5), for « = 4.35 and
a = 0.45. In Figure 2, we show the values for the mean, the variance, the skewness, and
the kurtosis of the corresponding power uniform distributions {7;(«)}, along o > 0.
Most importantly, the skewness changes sign between the convex case, @ > 1, and the
concave case, 0 < a < 1.
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Figure 1 - An original uniform distribution {p;}, in panel (a), where m — 1 = 20, and power
uniform distributions {7;(a)}, for m —1 =20 and @ = 4.35, in panel (b), and for 7 — 1 =20 and
a =0.45, in panel (c).
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Figure 2 - Mean, in panel (a), variance, in panel (b), skewness, in panel (c), kurtosis, in panel (d),
of the power uniform distributions {7,(«)}, for m —1 =20 and & > 0.
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2.2, Power binomial distribution

The original binomial distribution {p,(8)}, of the number of successes in 72 Bernoulli
trials, is

p0)=(

for {x;} ={0,1,...,m}, where 0 < 0 < 1.
The power binomial distribution {r,(¢, )}, can be obtained from (3) and (6), for a
given o >0, as

r(6,a)= <Z <:>9xf(1 _ e)m—xf>a _ <i <:>exf(1 — oy > )
j=1 =

’”)9’%1 _gys, ©
X

l

where 7,(0,2) = <<;n
1

In Figure 3, we consider an original binomial distribution {p,(0)}, given by (6), with
m =20 and 6 = 0.75, and the power binomial distributions {r,(6,2)}, given by (7), for
a=7.8and @ =0.25.

In Figure 4, we show the values for the mean, the variance, the skewness, and the
kurtosis of the corresponding power binomial distributions {7;(0, )}, along o > 0.
The power binomial distribution is a flexible distribution for situations characterized
by overdispersion, and also by underdispersion.
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Figure 3 - An original binomial distribution {p,(6)}, in panel (a), where » =20 and 8 = 0.75,
and power binomial distributions {7;(8, @)}, for m =20, § =0.75, and @ = 7.8, in panel (b), and
for m =20, § =0.75, and @ = 0.25, in panel (c).
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Figure 4 - Mean, in panel (a), variance, in panel (b), skewness, in panel (c), kurtosis, in panel (d),
of the power binomial distributions {7,(8, @)}, for m =20, § =0.75, and @ > 0.

2.3.  Power Poisson distribution

The original Poisson distribution {p;(0)}, used as a limiting distribution, and for the
occurrence of rare events, is

—0 Ox;
pi(6)= 2

- ®)
for {x;} ={0,1,...}, where 6 > 0.
The power Poisson distribution {r;(d,a)} can be obtained from (3) and (8), for a

given a >0, as
i -4 X\ i—1 0 X\ @
ri(e,a):<ze 4 >_<Ze o > ©)

p= x;! P x;!
where 7,(0,a) = (xl!)_“(e_gﬁxl)a and1=2,3,....
In Figure 5, we consider an original Poisson distribution {p,(&)}, given by (8), with
@ =7.75, and the power Poisson distributions {r,(d, a)}, given by (9), for @ = 6.8 and
a = 0.37. In Figure 6, we show the values for the mean, the variance, the skewness, and
the kurtosis of all the corresponding power Poisson distributions {r,(¢, 2)}, along a > 0.
The power Poisson distribution is a flexible distribution for situations characterized by
overdispersion, and also by underdispersion.
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Figure 5 - An original Poisson distribution {p;(0)}, in panel (a), where § = 6.5.75, and power
Poisson distributions {7,(8, )}, for @ = 7.75 and a = 6.8, in panel (b), and for § = 7.75 and
a =0.37, in panel (c).
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Figure 6 - Mean, in panel (a), variance, in panel (b), skewness, in panel (c), kurtosis, in panel (d),
of the power Poisson distributions {7,(d, a)}, for  =7.75 and a > 0.
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2.4.  Power negative binomial distribution

The original negative binomial distribution {p,(6)}, of the number of failures which
occur in a sequence of Bernoulli trials, with probability of success 8, before a target
number of successes 7 is reached, is

n+x;,—1

Xi

p =" a-oren, 10
for {x;} ={0,1,...,}, where n > 0 may be a real value and 0 < 6 < 1.

The power negative binomial distribution {r,(,)} can be obtained from (3) and
(10), for a given & >0, as

,lwm:<2’<n+xj—1>(1_@),79xj>“_<§<n+x,-—1>(1_9),7@x,>°’, n

j=1 Xj j=1 X

where (0, ) = <<77 o=l

Xy

In particular, the power Pascal distribution {r,(f,2)} and the power geometric dis-
tribution {r,(6,)} can be deduced from (11), by taking an integer 7 and the integer
n = 1, respectively. Interesting properties for the power geometric distribution may
be deduced from Chakraborty and Gupta (2015) and Nadarajah and Bakar (2016). In
particular, Chakraborty and Gupta (2015) studied the probability mass function, mo-
ments and an index of dispersion, quantiles and the median, and reliability characteris-
tics. Nadarajah and Bakar (2016) study specific expansions, shape properties, the prob-
ability generating function, the moment generating function, and order statistics.

>(1—9)’7(9x1> and=2,3,....

020 o 020 o 0.20

015 4 015 4 015 -
010 4 010 4
DBD,“‘ M‘MM i \‘ M‘MM ,“ M‘\MM
T T T T T T T T T T T T T T T
0 5 10 15 2 3 s 0 o1 2 0 s 0 15 2
@ ® ©

Figure 7 - An original negative binomial distribution {p,(6)}, in panel (a), where n = 6.67 and
6 = 0.75, and power negative binomial distributions {r,(0,a)}, for n = 6.67, § = 0.75, and @ =
5.32, in panel (b), and for 7 = 6.67, § =0.75, and @ = 0.69, in panel (c).

In Figure 7, we consider an original negative binomial distribution {p,(8)}, given
by (10), with » = 6.67 and & = 0.75, and the power negative binomial distributions
{r,(0,a)}, given by (11), for @ =5.32 and o = 0.69. In Figure 8, we show the values for
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Figure 8 - Mean, in panel (a), variance, in panel (b), skewness, in panel (c), kurtosis, in panel (d),
of the power negative binomial distributions {r,(, a)}, for n = 6.67, § =0.75, and a > 0.

the mean, the variance, the skewness, and the kurtosis of all the corresponding power
negative binomial distributions {r;(¢, )}, along @ > 0.

2.5.  Power hypergeometric distribution

The original hypergeometric distribution {p;(6)} of the number of white balls, in a
sample of 7 balls, without replacement, from a population of M balls, M of which are

white and M — M8 are black, is
<M 9> <M —M t9>
X; m—x;

M b
M6
for {x;} ranging in max (0, m —M +M0) < x; < min (m,M8). where m =1,2,... and
0<f<1.

The power hypergeometric distribution {7,(0, 2)} can be obtained from (3) and (12),

(12)
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Figure 9 - An original hypergeometric distribution {p,(8)}, in panel (a), where M = 350, m = 20,
and 0 = 0.51, and power hypergeometric distributions {7,(8, )}, for M =350, m = 20, § = 0.51,
and @ = 3.15, in panel (b), and for M =350, m =20,  =0.51, and @ = 0.47, in panel (c).
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Figure 10 - Mean, in panel (a), variance, in panel (b), skewness, in panel (c), kurtosis, in panel (d),
of the power hypergeometric distributions {7,(0, )}, for M =350, m =20, § =0.51, and @ > 0.
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for a given @ >0, as

i j ] i
M a M a ’
MO M0

where 7,(0,a2) = < M >_ <<M§><M_M9>> and:i=2,3,...,m+1.

MO x; J\ m—x,

In Figure 9, we consider an original hypergeometric distribution {p;(0)}, given by
(12), with M =350, m = 20, and 6 = 0.51, and the power hypergeometric distributions
{r,(0,a)}, given by (13), for @ =3.15 and @ = 0.47. In Figure 10, we show the values for
the mean, the variance, the skewness, and the kurtosis of all the corresponding power
hypergeometric distributions {7;(0, )}, along « > 0.

r.(0,a)= (13)

3. INEQUALITIES IN MOMENTS

We study inequalities in moments by a specific application of the system of inequalities
introduced in Jensen (1906). More precisely, we apply the well known Jensen’s inequal-
ity to what is commonly thought of as weights in a mean of values, in the convex case,
a > 1, and the concave case, 0 < a < 1.

3.1. Conwvex case

We define B, = 37, x! and we suppose that B, > 0. We have that B, min; p,(0) < u, <
B, max; p;(6) and min; p.(0) < B, u, < max; p,(6). Hence, we can choose a quantity
A(0) > (min; p,(6))7", so that (B 1A(O))u, > 1.

We introduce the sth order quantity 7, =3, x!(AF(x;;0))* =>; x; p;(0)*.

In the convex case, a > 1, we have that (B, 'A(6))u, < (B7'A(6))u,)*. The Jensen’s

inequality then determines the inequalities in moments

U, A0 ', <AG) 2w, (14)
When (B;'A(0))u, = 1, the quantity A(6)*~" in (14) is the least upper bound. Of
course, T, < 2% 'w_. See Appendix A.
Considering a~! in place of @, where a > 1, we have the inequalities in moments in
the concave case, below.

3.2, Concave case

In the concave case, 0 < a < 1, we have that (B71A(6))u, > ((B7'A(9))u,)?, where
A(0) > (min, p;(0))~". The Jensen’s inequality then determines the inequalities in mo-
ments



346 A. Pallini

u, >AG) > AG) 125 w,

S

(15)

When (B7'A(0))u, = 1, the quantity A(6)*~! in (15) is the greatest lower bound.
Of course, 7, >2°"w_. See Appendix A.

Considering ! in place of @, where 0 < @ < 1, we have the inequalities in moments
in the convex case.

3.3.  Distribution functions

We define the step function B = 37,1/, ). We have that Bmin; p;(0) < F(0) <
Bmax; p;(€). Hence, we can choose a nondecreasing function A(x; ), where —oo <
x < 400, so that A(x;;6) > (min, p;(0))™" and (B(x;,)A(x;;0))F(x;;6) > 1, for all
{x:}.

We put the step function K(,a) = 3, (AF(x;30))* 1}, )=, pi(0)%];

In the convex case, @ > 1, since

A(x;;0)F (x;30) < (A(xi;§>F(xi§‘9)>a
B(x;) - B(x;) ’

1 1

x;,00

X;,00)°

(16)
for all {x;}, the Jensen’s inequality determines the inequalities in d.f.’s

F(x;0) < A(x; 0)" 'K (x:0,@) < A(x; 0)"'2* ' H(x;6,a), 17)

where K(x;0,a) <297 H(x;6, ), for all —oo < x < +00. See Appendix B.
In the concave case, 0 < @ < 1, since

A(x;;0)F (x;;0) S <A(xi;9)F(xl-;(9)>“
B(x;) B B(x;) ’

1 1

(18)

for all {x;}, the Jensen’s inequality determines the inequalities in d.f.’s

F(x;60) > A(x;0)* 'K (x;0,a) > A(x;0)* "2 H(x; 0, ), (19)

where K(x;0,a) > 2°71H(x;6, ), for all —oo < x < 4+00. See Appendix B.

When (B(x;) "' A(x;;0))F (x;;0) = 1, for all {x, }, the values A(x;68)*~" in (17), where
a > 1, are the least upper bounds and the values A(x;8)* ! in (19), where 0 < @ < 1, are
the greatest lower bounds, for all —oo < x < +00.

Considering @' in place of @, where @ > 1, we have the inequalities in d.f.’s in the
concave case, and considering @' in place of &, where 0 < & < 1, we have the inequalities
in d.f.’s in the convex case.
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3.4.  Intermediate distributions

The concept of intermediate distributions is based on the fact that these distributions
lie, in some sense, between an original distribution and a power distribution.

From inequalities in moments (14) and (15), and inequalities in d.f.’s (17) and (19), the
parametric intermediate distribution {g;(0, @)}, with d.f. G(0,a) = 3, ¢;(0,2)1;
and sth moment v, = >, x!¢,(0, @), can be defined as

(AF(x;0))"
S (AF(xj30))%
where the jump AF(x;;0) is according to (1).
It simply follows that ¢,(0,a) = (3 pj(ﬁ)“)flpi(ﬁ)“ and >, ¢,(6,2) = 1. In inequal-
ities (14) and (15), we may note that v, = (ZIj(AF(xj;@))a)_lrs = (Z] p]»(@)a)_lrs.
Similarly, in inequalities (17) and (19), we have that

G(0,a) = (D (AF(x;:0))") K(b,a)= (D] p;(0)°) ' K(6,a),

]

xl’oc)

q;(0,a)= (20)

where o > 0.

Whereas @ = 1, the intermediate distribution {g;(0,2)}, with d.f. G(6, ), coincide
with the original distributions {p,(8)}, with d.f. F(0), since 3_; p;(6) = 1. It is impor-
tant to distinguish between the convex case, @ > 1, and the concave case, 0 < o < 1.

The moments v,, for the intermediate d.f. G(6,a), cannot be expressed in closed
form, and must be calculated or approximated, as explicit sums.

Recalling also the situation of Figure 1, we may observe that an original uniform
distribution coincides with all intermediate uniform distributions g;{a}, for all @ > 0.

The intermediate binomial distribution {g;(0, @)} can be obtained from (6) and (20),

for a given @ >0, as
<<m>9xl<1 _ 9)m—x,>
Xi

(o)

]

q,(0,a)=

; 21)

where: =1,2,...,m+1.

In Figure 11, we consider the original binomial distribution {p;(0)}, given by (6),
with m =20 and € = 0.75, and the intermediate binomial distributions {g;(8, )}, given
by (21), for m = 20, 6 = 0.75, « = 4.15, and o = 0.35. In Figure 12, we show the
values for the mean, the variance, the skewness, and the kurtosis of all the corresponding
intermediate binomial distributions {g;(#, )}, along @ > 0.
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Figure 11 - An original binomial distribution {p,(6)}, in panel (), where m = 20 and 6 = 0.75,
and intermediate binomial distributions {g;(0,a)}, for m =20, & = 0.75, and @ = 4.15, in panel
(b), and for m =20, § =0.75, and @ = 0.35, in panel (c).
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Figure 12 - Mean, in panel (a), variance, in panel (b), skewness, in panel (c), kurtosis, in panel (d),
of the intermediate binomial distributions {g,(8, a)}, for m =20, 9 =0.75, and a > 0.
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Figure 13 - Mean, in panel (a), variance, in panel (b), skewness, in panel (c), kurtosis, in panel (d),
of the intermediate Poisson distributions {g;(8, a)}, for § =7.75, and a > 0.
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of the intermediate negative binomial distributions {g,(8, )}, for n = 6.67, § =0.75, and @ > 0.
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Figure 15 - Mean, in panel (a), variance, in panel (b), skewness, in panel (c), kurtosis, in panel (d),
of the intermediate hypergeometric distributions {g,(8,a)}, for M =350, m = 20, § = 0.51, and
a>0.

Similarly, the intermediate Poisson, the intermediate negative binomial, the inter-
mediate hypergeometric distributions {g;(0, @)}, can be obtained from (20), for a given
a > 0. The intermediate binomial and Poisson distributions are proportional to the
corresponding Conway-Maxwell binomial and Poisson distributions.

In Figures 13, 14, and 15, we show the values for the mean, the variance, the skew-
ness, and the kurtosis of intermediate Poisson, intermediate negative binomial, and in-
termediate hypergeometric distributions {g;(0, )}, along a« > 0.

4. STOCHASTIC ORDERS

We refer to Miiller and Stoyan (2002, chapter 1), and Belzunce ez al. (2016, chapter 2),
for the basic theory on univariate stochastic orders.

Given an original d.f. F(8), we simply have that both the power d.f. H(8,) and the
intermediate d.f. G(0, @), where a > 0, satisfy the usual stochastic order, as H(0,a,) >
H(0,a,) and G(0,a,) > G(0,a,), if a; < a,, respectively.

In particular, the power d.f. H0,(2), and the intermediate d.f. G(#, @) increase with
respect to d.f. F(6), for the concave case, 0 < @ < 1, as @ goes to 0, and decrease with
respect to d.f. F(6), as a increases along the convex case, @ > 1. The analytic behaviour
is faster for the power d.f. H(8, ), for all @ > 0.
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Since the values in {x;} are nonnegative, the sth moments w, and v, of the power
d.f. H(6,a) and the intermediate d.f. G(0, @), increase, as « increases, along & > 0.

5. UNIMODALITY

We refer to Dharmadhikari and Joag-Dev (1988, chapter 4), for the basic theory on uni-
modality of discrete distributions.

Considering the original distribution {p;(0)}, we say that {p,(6)} is k-unimodal,
about a mode £, if there exist at least one integer &, such that p,(8) > p,_,(0), for i <k,
and p;(0) < p;(0), for i > k. A distribution {p;(6)} is strongly unimodal if and only
if the sequence {p;(6)} is log-concave, that is p;(0)* > p,,1(0)p,_,(0), for all i, namely
log p;(0) > 27 (log p; 1(0) +log p;_,(0)), for all i.

Unimodality of the original distribution {p;(6)} implies unimodality for the power
distribution {7;(0, )}, given by (3), and the intermediate distribution {g;(2)}, given by
(20), where @ > 0. If the power distribution {7;(#, @)} and the intermediate distribution
{g;(8,a)} are unimodal, then strong unimodality of the original distribution {p;(0)}
implies strong unimodality for {r,(6, )} and {g;(0, )}, respectively, where a > 0.

6. INFERENCE USING LIKELIHOOD

6.1. Power distributions

Let {z;} be a sample of z i.i.d. observations from the r.v. Z, with power distribution
{r.(0,2)}, given by (3), on the values {x; }. Since a sample value z, is drawn by choosing a
value from {x; }, we may write z; = x;,. The power log-likelihood /(0, ) = log L(0, 2)
then is

[(0,a)= Zlog 70, 2). (22)
k

The score function $(0, ) is the gradient vector $(0,2) = (5(6,2),,5(0,2),), with
components $(6,a), = (d/30)I(0,a) and §(0,a), =(d /I a)l(0,a). In particular, for

the power score function, we have that

_ 1 371'(1@)(‘9,0!)
Sw’a)l_;(n(k)(@,a) =3 > 23)

_ 1 371'(16)(‘9,0!)
$:a), _§<rl«(,€)(€, a) Jda > @4

6.2. Intermediate distributions

Let {y,} be a sample of » i.i.d. observations from the r.v. Y, with intermediate distri-
bution {g;(0,)}, given by (20), on the values {x;}, where y; = x;(;). The intermediate



352 A. Pallini

log-likelihood /(8, @) = log L(0, «) then is
l(@,a):Zlogqi(k)(ﬁ,a). (25)
k

The intermediate score function $(6,a) = (§(6,a),,5(0,a),) can be obtained by
substituting 7;;)(0, @) with g;)(0, @), in the components (23) and (24).

6.3.  Information

For the power log-likelihood /(0,a), given by (22), the expected information matrix
#(0,a) can be obtained, from minus the Hessian of /(6, @), as

_(I(0,a),; F(b,a),
H0,0)= <J(9,a)21 J(@,a)2§> ’ 26)

where
26,a),, E(M)< 35%“”)
() Ty
H(0,a)y, = (9a)< 85(5)9;(2)2)
A

I(0,0), = (9 a)< 35(;(;&)2>

1 r(0,8)3r,(6,a) 3*ri(6a)
nZ( b2 26  2x  262a > @
95 0,
I(0,a),= E(Q,a)<_ (é’aa)1>
:ﬂ(e,a)zl' (30)

For the intermediate log-likelihood /(8, @), given by (25), the expected information
matrix .¢(0,a) can be obtained from (26), by substituting 7,(0, ) with ¢,(6,«) in the
elements (27), (28), (29), and (30).

6.4. Asymptotics

Applying Wald (1949), under some regularity conditions, and by using the strong law
of large numbers, the convergence, with probability 1, of the m.Le.’s (6,2) to (64, ay),
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as n — 00, can be shown.

Following Lehmann and Casella (1998, chapter 6), we can see that the third deriva-
tives of the power and intermediate log-likelihoods /(6, ), given by (22) and (25), exist
and can be bounded, in absolute value, by specific functions with finite expected values.
The information matrices .#(0, a), defined as (26), for the log-likelihoods (22) and (25),
have finite elements (27), (28), (29), and (30), and are positive definite. We also have that

n'/ 2((5: @)— (04, y)) is asymptotically normal with mean (0,0) and covariance matrices
#(by,20)7", as n — oco. Furthermore, we have that & and € in (6,4) are asymptoti-

cally efficient, in the sense that 7!/ 2<é —0,) and n'/2(&@ — a,) have asymptotic variances
IOy, o)y, and I (6, )5, , respectively, as n — oo.

7. SIMULATION EXPERIMENTS

We performed simulation experiments to study the bias and the mean square error of

the m.l.e’s (é, @) in the power distributions {r,(¢, )}, given by (3), and the interme-
diate distributions {g,(6, )}, given by (20). We always simulated 10000 replications of
the same experiment that consists in drawing a sample of 7 1.i.d. observations, from a
distribution {r;(2)}, {r;(0,2)} or {g;(0,a)}, where n = 5,10,20,50,100 and @ > 0. In

all the simulations we obtained, we have a smaller mean square error for the m.l.e 6 in
convex cases, @ > 1, and a smaller mean square error for the m.l.e @ in concave cases,
O<a<1.

We used the computational environment for statistics R, by R Core Team (2017).
In particular, in the R "optim", we considered the algorithm of Brent (1973, chapter
5), for the univariate optimization problems min (—/(«)), with a log-likelihood of the
form /(a), and the algorithm of Nelder and Mead (1965), for the optimization problems
min g \(—/(0,@)), with a log-likelihood of the form /(6, ). The numerical algorithms
of Brent (1973, chapter 5), and Nelder and Mead (1965) do not require the derivative and
the gradient, respectively, of the corresponding log-likelihoods /() and /(0, ).

In Table 1, we provide the simulation results about the m.l.e. @ of a, in the power
uniform distribution {7;(a)}, glven by (5), with m —1=10, « =4.35 and @ = 0.45. The
performance of & improves, as 7 increases, without a significant effect due to 7 — 1.

TABLE 1
Bias and mean square error of the m.Le. &, for the power uniform distribution {r,(a)}, with
m—1=10, a =4.35, and a = 0.45.

n b(@) mse(@) b(a) mse(Q)
5 0.1074  0.0730 -0.1408  0.0254
10 0.0996 0.0712 -0.1370  0.0243
20 0.1004 0.0702 -0.1314 0.0226
50 0.0965 0.0690 -0.1225 0.0201
100 0.0925 0.0691 -0.1149 0.0179
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In Tables 2 and 3, we consider the simulation results about the m.l.e.’s (é, @)of (6,a),
in the power binomial distribution {7;(0,2)}, given by (7), with § = 0.75, m = 10,

A

a =7.80,and @ = 0.25. The performance of & improves, as 7 increases, with a significant
effect due to m. The behaviour of @ shows a positive bias.

 TABLE2

Bias and mean square error of the m.l.e’s (0, &), for the power binomial distribution {r,(0,a)}, with

6 =0.75, m = 20, and « = 7.80.

no bl mse(d) b@&) mse(d)

5 0.0006  0.0007 0.0749 0.1096

10 -0.0020 0.0005 0.0869 0.1195

20 -0.0027 0.0003 0.0913 0.1224

50 -0.0016  0.0002 0.1158 0.1341

100 -0.0005 0.0001 0.1313 0.1425
 TABLE 3

Bias and mean square error of the m.Le’s (0, &), for the power binomial distribution {r,(0, )}, with

6 =0.75, m = 20, and a = 0.25.

n bl mse®) b@&) mse(d)
5 -0.0051 0.0023  0.0069 0.0025
10 -0.0041 0.0019 0.0048 0.0024
20 -0.0030 0.0016 0.0036  0.0022
50 -0.0018 00012 0.0039 0.0020
100 -0.0008 0.0010 0.0040 0.0018

A

In Tables 4 and 5, we provide the simulation results about the m.lL.e.’s (6,2) of (6, 2),
in the power Poisson distribution {r;(6, a)}, given by (9), with § =7.75, « = 6.80, and

a = 0.37. The performance of & and @ improve, as 7 increases, and their behaviour

shows bias.

TABLE 4

Bias and mean square error of the m.l.e’s (0,&), for the power Poisson distribution {r,(0,a)}, with
0 =7.75 and « = 6.80.

n b0 mse®) b@&) mse)
5 0.0422 0.2397 0.2171 0.3834
10 0.0399 0.2081 0.2010 0.3734
20 0.0143 0.1660 0.2197 0.3596
50 -0.0088  0.1237 0.2151 0.3377
100 -0.0389 0.0979 0.2310 0.3301
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TABLE 5

Bias and mean square ervor of the m.lLe’s (0,&), for the power Poisson distribution {r,(0,a)}, with
0 =7.75and a =0.37.

no bl msed) b)) mse(d)
5 0.0914 0.2304 0.1324 0.0786
10 0.1421 0.2295 0.0595 0.0373
20 0.1746  0.2351 0.0192 0.0171
50 0.1873 0.2476  -0.0037 0.0076
100 0.1950 0.2327 -0.0112 0.0051

In Tables 6 and 7, we provide the simulation results about the m.l.e.’s (é, &) of (6, a),
in the power negative binomial distribution {r,(¢, )}, given by (11), with = 6.67,

6 =0.75, a =5.32, and @ = 0.69. The performance of ¢ improves, as 7 increases. The

behaviour of @ shows a negative bias.

TABLE 6

A

Bias and mean square ervor of the m.Le.’s (0,&), for the power negative binomial distribution
{r,(0,a)}, withn=16.67, 0 =0.75, and a = 5.32.

n b(l)  mse(@) b)) mse(d)

5 0.0087 0.0005 0.0567 0.1694

10 0.0062 0.0003 0.0343 0.1717

20 0.0040 0.0002 -0.0028 0.1742

50 0.0014 0.0001 -0.0693 0.1607

100  -0.00001 0.00009 -0.1279 0.1501
TABLE 7

A

Bias and mean square ervor of the m.lLe’s (0,&), for the power negative binomial distribution
{r.(8,a)}, with n=6.67, § =0.75, and a = 0.69.

no bl msel@) b@&)  mse(d)
5 -0.0141  0.0015 -0.1169 0.0175
10 -0.0118 0.0010 -0.1201 0.0181
20 -0.0112  0.0007 -0.1239 0.0188
50 -0.0129  0.0005 -0.1300 0.0197
100 -0.0149 0.0005 -0.1336  0.0201

In Tables 8 and 9, we provide the simulation results about the m.l.e.’s (é, @) of (6,a),
in the power hypergeometric distribution {r;(, a)}, given by (13), with  =0.75, M =

350, @ = 3.15, and @ = 0.47. The performance of & improves, as 7 increases. The

behaviour of @ shows a negative bias.
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TABLE 8
Bias and mean square ervor of the m.Le.’s (0,&), for the power hypergeometric distribution
{r(0,a)}, with @ =0.75, M =350, and a = 3.15.

n bl mse(d) b))  mse(d)

5 0.0135 0.0064 0.0135 0.0418

10 0.0053 0.0018 0.0087  0.0525

20 0.0041 0.0006 0.0160  0.0661

50 0.0014 0.0001 0.0056  0.0843

100 0.0009 0.00004 -0.0072 0.0881
TABLE 9

Bias and mean square error of the m.le.’s (0,&), for the power hypergeometric distribution
{r,(0,a)}, with @ =0.75, M =350, and a = 0.47.

n o b)) mseld) b@) mse(d)
5 -0-0841 0.0081 -0.0848 0.0083
10 -0.0726  0.0063 -0.0857 0.0085
20 -0.0491 0.0039 -0.0917 0.0101
50 0.0125 0.0009 -0.1123 0.0160
100 0.0148 0.0004 -0.1103 0.0157

In Tables 10 and 11, we provide the simulation results, about the m.l.e.’s (é, Q) of
(0,), in the intermediate binomial distribution {g,(0, )}, given by (21), with 6 = 0.5,

m =20, @ = 4.15, and @ = 0.35. The performances of & and @ improve, as 7 increases,

showing the bias of .

TABLE 10
Bias and mean square error of the m.Le.’s (0, &), for the intermediate binomial distribution
{q,(8,2)}, with § =0.5, m =20, and a = 4.15.

no bl mse(d) b@&)  mse(d)
5 -0.0001 0.0006  0.0249  0.0850
10 -0.0001 0.0003 0.0081 0.0826
20 -0.0004 0.0002 -0.0181 0.0790
50 -0.0003 0.0001 -0.0568 0.0823
100 -0.0003 0.0001 -0.0864 0.0856
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TABLE 11
Bias and mean square ervor of the m.Le.’s (0,&), for the intermediate binomial distribution
{,(0,a)}, with @ = 0.5, m =20, and « = 0.35.

no bl mse(@) b@&)  mse(d)
5 -0.0817 0.0075 -0.0845 0.0081
10 -0.0775 0.0068 -0.0868 0.0085
20 -0.0725 0.0061 -0.0899  0.0090
50 -0.0640 0.0049 -0.0917 0.0094
100 -0.0556 0.0039 -0.0941 0.0099

7.1.  Stochastic approximation

Sometimes, intermediate distributions {g;(f,)} must be estimated, by approximat-
ing their denominator, that is a normalizing constant. An intermediate distribution

{g;(8,a)} may be estimated as

A npi(6>a
G.0.)= 2
> Pigey(0)2
Monte Carlo integration shows that, in (31), the approximation of the normalizing
constant satisfies E9<n_1 > pi(k)(ﬁ)_lpi(k)(ﬁ)“) =37, p;,(0)%, with a variance that de-

creases to 0, as 7 — 00. See Ross (2013, chapter 9).

@1

In Tables 12 and 13, we provide the simulation results about the m.l.e.’s (é, @) of
(0,2), in the intermediate binomial distribution {g;(&, )}, given by (21), with the ap-
proximation (31) of the normalizing constant, ¢ = 0.5, m = 20, @ =4.15, and @ = 0.35.

TABLE 12
Bias and mean square error of the m.l.e.’s (0, &), for the intermediate binomial distribution
{4,(6,a)}, with an approximation of the normalizing constant, @ = 0.5, m = 20, and o = 4.15.

n b(h)  mse®d) b(&) mse(d)
5 0.0001 0.0006 -0.0076 0.0873
10 0.0001 0.0004 -0.0252 0.0873
20 -0.0001 0.0002 -0.0582 0.0870
50 -0.00001 0.0001 -0.1153 0.1035
100  -0.0002 0.0001 -0.1882 0.1441
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TABLE 13
Bias and mean square ervor of the m.Le.’s (0,&), for the intermediate binomial distribution
{4:(8,a)}, with an approximation of the normalizing constant, = 0.5, m = 20, and a = 0.35.

no bl mse(d@) b@&)  mse(d)
5 -0.0782  0.0070 -0.0893  0.0091
10 -0.0739 0.0064 -0.0904 0.0094
20 -0.0712  0.0060  -0.0903  0.0093
50 -0.0672  0.0055 -0.0900 0.0094
100 -0.0624 0.0049 -0.0893  0.0094

8. AN APPLICATION

We considered a data set in Kadane (2016), about the number of nice plants {x;} =
{0,1,2,3,4,5,6}, with the number of observed pots {0,2,2,5,5,3,3}.

030 o 030 o 0.30 -

0.00 o

Figure 16 - Empirical distribution from the data set, in panel (a), fitted power binomial distribution

{ri(é, &)}, in panel (b), and fitted intermediate binomial distribution {qi(é, @)}, in panel (c).

The dataset is interesting, because there was a situation of dependence for the Bernoulli
r.v.’s, that ought to define a binomial r.v.. In particular, the use of a parameter  that
determines the power and intermediate binomial distributions {7;(0,2)} and {g;(0,2)},
given by (7) and (21), respectively, could be applied for an effective fitting.

In Figure 16, we consider the empirical distribution from the data set, and the fit-

ted power binomial distribution {7, (é @)}, where the m.le.’s were 6 = 0.7870 and
= 0.4103, and the fitted intermediate binomial distribution {ql(ﬁ @)}, where the

m. 1 e’s were O = 0.6479 and & = 0.4913. The m.Le’s 6 and & were all obtained by
the R "optim", with the algorithm of Nelder and Mead (1965). The values for & were
comparable, but they induced slightly different values for 6. In any case, the resulting
shape of both fitted distributions show a good approximation to the observed distri-

bution. We may observe that the fitted power binomial distribution {ri(é, @)} may be
preferable, for small values in {x;}, while the fitted intermediate binomial distribution



Discrete Power Distributions and Inference Using Likelihood 359

A
{g;(8,&)} performs better, for large values in {x;}. However, power and intermediate
binomial distributions, at least for this example, show a similar performance.
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APPENDIX
A. PROOF

For a > 1, the Jensen’s inequality determines

=nor(25P0)
<2 S0y

<(1> 12 (O) = () (0 >>

=" Y2 ;

ABy . 2 x((Zici 2,0) —(ZiZi 2,0))
=B 2

b

and then (14).

For 0 < @ < 1, the Jensen’s inequality determines

A0y, T (Ze 2,0) — (Z2 2,O))')
B 2

b

and then (15). O
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B. PROOF
For @ > 1, the Jensen’s inequality determines

A(x;;0) A(x;;0)

TmF<xi;@>§<TmF(xi;6)>a

i-zl 1[x/,oo)AF(x-;<9) a
:A<x“9)a< ] B(x;) ] >

Alx;;0)*
<=2 1 o (AF(x;50))*
By 2 B35

A7 S M(<1>F<x]-;e>—<1>F_<x]-;e>>“
X; = i

PN

B 2
S ” =1 1[x],oo)AF(x],9,a)
B(x;) 2

b

and then (17).
For 0 < @ < 1, the Jensen’s inequality determines

> A(xl‘; 6)(1 2a ;:1 l[x],oo)AF(x]) 9’ a)
- B(x) 2

b

and then (19). O
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SUMMARY

Discrete power distributions are proposed and studied, by considering the positive jumps on the
discontinuities of an original discrete distribution function. Inequalities in moments and distri-
bution functions are studied, allowing the definition of discrete intermediate distributions that lie
between an original distribution and a power distribution. Original uniform, binomial, Poisson,
negative binomial, and hypergeometric distributions are considered, to propose new power and
intermediate distributions. Stochastic orders and unimodality are discussed. Estimation problems
using likelihood are investigated. Simulation experiments are performed, to evaluate the bias and
the mean square error of the maximum likelihood estimates, that are numerically calculated, with
classic tools for numerical optimization.

Keywords. Asymptotics; Inequalities; Information; Intermediate distributions; Maximum likeli-
hood estimation; Power distributions; Stochastic orders; Unimodality.



