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1. INTRODUCTION

Life testing experiments are usually time consuming and expensive in nature. To reduce
the cost and time of experimentation, various types of censoring schemes are used in the
life testing experiments. This paper dwells on Type-II censoring scheme for developing
preliminary test estimators (PTEs) and preliminary test confidence intervals (PTClIs) for
the parameters and measures of reliability with respect to exponentiated distributions.

The reliability function R(t) is defined as the probability of failure-free operation
until time ¢. Thus, if the random variable X denotes the lifetime of an item or a sys-
tem, then R(¢) = P(X > ). Another measure of reliability under stress strength setup
is the probability P = P(X > Y), which represents the reliability of an item or a sys-
tem of random strength X subject to random stress Y. For details of work existing in
literature, one may refer to Bartholomew (1957, 1963), Pugh (1963), Basu (1964), Tong
(1974, 1975), Johnson (1975), Kelly et al. (1976), Sathe and Shah (1981), Chao (1982),
Awad and Gharraf (1986), Tyagi and Bhattacharya (1989), Chaturvedi and Rani (1997,
1998), Chaturvedi and Surinder (1999), Chaturvedi and Tomer (2002, 2003), Chaturvedi
and Singh (2006, 2008), Chaturvedi and Pathak (2012, 2013, 2014) and Chaturvedi and
Malhotra (2016, 2017, 2018).

Quite often we come across cases in which there exists some prior information in re-
spect of parameters, which may ultimately lead to improved inferential results. It is well
known that the estimators with the prior information (called the restricted estimators)
perform better than the estimators with no prior information (called the unrestricted
estimators).
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However, when the prior information is doubtful (or not sure), one may combine
the restricted and unrestricted estimator to obtain an estimator with better performance,
which leads to the PTEs. The preliminary test approach was first discussed by Bancroft
(1944) and further advancements were proposed by Sen and Saleh (1978), Saleh and Kib-
ria (1993), Kibria (2004), Kibria and Saleh (1993, 2004, 2005, 2006, 2010), Salch (2006)
and Belaghi et al. (2014, 2015).

A lot of research work related with reliability estimation of different distributions
has taken place. For a brief review, one may refer to Ljubo (1965), Tadikamalla (1980),
Mudholkar and Srivastava (1993), Mudholkar et al. (1995), Mudholkar and Hutson (1996),
Gupta et al. (1998), Gupta and Kundu (1999, 2001a,b, 2002, 2003a,b), Jiang and Murthy
(1999), Gupta et al. (2002), Xie et al. (2002), Ragab (2002), Nassar and Eissa (2003, 2004),
Lai et al. (2003), Kundu ez al. (2005), Kundu and Gupta (2005), Kundu and Raqab (2005),
Pal et al. (2006, 2007), Abdel-Hamid and AL-Hussaini (2009), Shawky and Abu-Zinadah
(2009), AL-Hussaini (2010), AL-Hussaini and Hussein (2011), Abdul-Moniem and Abdel-
Hameed (2012) and Chaturvedi and Vyas (2017).

In the present paper, we have dealt with an overview of exponentiated distributions
in Section 2. The relevant results on the uniformly minimum variance unbiased estima-
tors (UMVUEs) and the maximum likelihood estimators (MLEs) of parameter o raised
to certain power p, the measures of reliability functions, namely, R(¢) and P under
Type-II censoring, as available in literature are reproduced in Section 3 for quick refer-
ence and use by us subsequently. In Section 4, we develop the PTEs for parameter o
raised to certain power p, R(t) and P respectively based on their UMVUEs and MLE:s.
In Section 5, we derive the PTCIs for the parameter o, R(¢) and P besides obtaining the
expression of coverage probability of the PTCI for the parameter ‘o’. Finally, Section 6
depicts the supporting numerical results.

2. EXPONENTIATED DISTRIBUTIONS

Let us consider a positive random variable X, with cumulative distribution function
(cdf) F(x). Then, for ¢ >0,

Gx)=[F(x)]" 0
is also a cdf. Such distributions are referred to as exponentiated distributions. Denoting
by f(x), the probability density function corresponding to F(x), we can write

g(x)= o[F(x)]"" f(x). @
Let us suppose that 7 items are put on life testing and failure of only first 7 items are
observed. Let us denote the r observed failure times by Xy <Xpy<...< X(r), (0<
r < n) which implies that (7 — r) items have survived until X, .
Using (2), the joint pdf of 7 order statistics X(1> < X(z) <...< X(n) is given by

& (1) Xy s X 0) = 210" [ ] f G )IF Gep)1 3)
=1
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or
, AT f(x)
8 (X1 X(2)s -+ X(ny30) = mlo l_[ exp{—o(—logF(x;)))} . 4)
i=1 F(x(i)>
Cons1der1ng the transformation, y ;) = —log F(x;), the joint pdf of Y{;) <Y, <... <

Y, is given by

h*(y(1),y(2), s s V(n)s o)=nlo"exp <—o' Zy(i)> ®)

i=1

on integrating out Y, ) < Y|, , < ... < Y{, from (5), the joint pdf of ¥{;) < ¥}, <
< Y(r) is as follows

P (VY- Vo) =n(n—1)...(n—7 +1)0" exp {_0 <Zy(i) - r)y(r)>} '

1=1

Since F(x;), being cdf, follows the U(0,1) distribution, —log F(x,) follows the expo-
nential distribution with mean life 1/0.
Consider the transformation Z; = (n —i + 1)(Y ;) = Y(;_y)), t = L,2,...,7

> Zz—<2y (=) >>:s,.

§,, being the sum of exponential variates, follows the gamma distribution with pdf

r

t(s,,0)= (;—s:_l exp(—os,). (6)

7o
r

3. AVAILABLE RESULTS ON CLASSICAL ESTIMATION

In the present paper, we intend to utilize appropriately certain results on UMVUE and
MLE for o7, R(t)and P, derived by Chaturvedi and Vyas (2017). These are consolidated
and reproduced below for quick reference through Result 1 and Result 2.

RESULT 1. The UMVUE and MLE of o? and R(t) are as follows:
(i) For (p #0), the UMVUE of o'?, i.e.
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(ii) For (p #0), the MLE of o'?, i.e.

(i) The UMVUE of R(t), i.e.

r—1
ﬁy(t):l—[1+b%§ﬂ} ; —logF(r)<S,.

r

(iv) The MLE of R(¢), 1.e.
Ry (6)=1—(F(2))> .

Suppose X and Y are two independent random variables following the classes of
distribution g,(x;0,) and g,(y; 0,), respectively, where

g (x;0,) =0, Fy(x)" " fi(x),
&(302) = 0, F0)7 /().

Let us suppose that 7 and m items are put on test corresponding to X and Y, respec-
tively. Further, the failure times of » and / units are observed from X and Y, respec-
tively.

r /
Asdone earlier, S, = 3 Y,y +(n— 7)Y ,yand T; = 3 Yy +(m — )Y ).
j=1 j=1

RESULT 2. The UMVUE and MLE of P are respectively as follows:
() The UMVUE, ie.

Sy

7+ r—1
) (Z—l)Ll(l—z)l_z[l—{l—?z} } S, <T),
P _ 7

) (1—1)J01(1—z)1—2[1—{1—92}7_1], S, =>T,.

(i) The MLE, ie.
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4. PROPOSED PRELIMINARY TEST ESTIMATORS

Let us suppose that the prior information of the parameter can be expressed in the form
of following hypothesis

Hy:0 =0, against H,:0 # oy,
From (6), we know that
208, ~ x5 - )
Therefore, the critical region is given by
(0<S, <ky)U(k, < S, < o00),

where ky = i 25, (%) ko = i X3, (1—3) and a is the level of significance. Let us
suppose

o4

2 (2N _ 2 (1_%\_
)(27(2>_C2 and )(27(1 2)_Cl (8)
and I(A) be the indicator function of the following set
A= {XZZV; CZ < XZZr < Cl} .
The PTEs of o# based on UMVUE and MLE are then given respectively by

Gpr y=00—(Gp—03)(4) ©)
and
31;>7T_ML = 8/\[le - (‘?AZL —o)I(A), (10)

where 57 and G/, are as defined in Result 1(i) and Result 1(ii), respectively.

Next, we find the PTEs of R(¢) and P based on UMVUEs and MLEs. Using Re-
sult 1(iii) and Result 1(iv) on the UMVUE and MLE of R(t), the PTEs of R(t) based on
UMVUE and MLE are given respectively by

Rpy () =Ry (t)— (Ry(t) = Ry()I(A), (11)
where Ry(¢) = 1— F(t)%, under Hy and
Ry 101(t) =Ry (1) — Ry, (1) — Ro(0)I(A). (12)

Let us now derive the PTEs of P based on UMVUE and MLE. We know that

P = 91

o+ o0,
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Suppose, we want to test
Hy: P =Py against H,: P # P,
2
1—P,’

P =P, gives 0, =ko, where k=

Therefore, H, is equivalent to

Hy:0,=ko, against H,:0, #ko,.

We know that
20,8, ~ y3, and 20,T; ~ y3;.
Therefore,
0,81
~F 5. 13
o, Tl?’ 27,21 ( )

The critical region for testing Hy, : P = P, is given by
S, S
L <k, JUlk< L),
(F<k)o(6<3)
,

by = ,elsz( >and/e lez,,y(l—%). (14)

where

Let I(B) be indicator function of the set
B= {Fzr,215C4 < F2r,21 <G},

where C; Fzmz( ) C,=F, (
As seen earlier in Result 2(1) and Result 2(ii), the UMVUE and MLE of P when X,
Y belong to same family of distribution are respectively given by

7 7,
(Z—l)f (1—2)1—2[1—{1—?1 z} ] S, < Ty,
I/J\U: O1 r —1
T r
(1—1)f (1—2)1—2[1—{1—8—12} ] S, =T,
0 r

and
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The PTEs of P based on UMVUE and MLE are then obtained respectively by

~

Ppr y =Py —(Py—P)I(B) (15)
and
Ppr yr =Py — Py — Po)I(B), (16)

where P, is the assumed value of P under H,,.

5. PRELIMINARY TEST CONFIDENCE INTERVALS

In this section, we derive the PTClIs for o, R(¢) and P based on their UMVUEs and
MLEs.
From (7), we know that, 20§, ~ y;.

2 /a 2 a
)(27(5) )(21*(1_5) _
= P{T<0<T —1—(2, (17)

r

where @ is the significance level.
) .. ~ 1 ~
From Result 1(i) and Result 1(ii), we know that 6, = %= and 6,;; = -, therefore,

100(1 — a)% equal tail confidence interval (CI) for o based on UMVUE and MLE may
be written as

2 (@ 2 a
_ )(27(5) ~ X27<1_5>A
]ETO'U_|:2<7_1>O-U’ 2(7__1) UU (18)
and
2 (2 2 1_£
Ipr o m1= [ZZ;EZ)&ML’ 2 (27 2>6\MLi|' (19)

The proposed PTCI of o based on UMVUE and MLE are as follows:

6.(3) o (=3).

Ipr o v = [2(27 Szl)) Ipr U HUPT_U} (20)
13, (5) ~ X, (1=3)

Ipr o oy = [#UPT_ML’ %UPT_ML} , 1)

where Gp7 ; and Opr ; are as defined in (9) and (10), respectively.
Next we derive the PTCI for R(¢). Using (1), we know that

R(t)=1—exp{ologF(¢)}. (22)
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Using (17) and (22), we can write

2 (@ 2 (1_@
P {l—exp<)(2T<2>logF(t)> <R(t)< l—exp<%logF(t)>} =1—a.

r r

Therefore, 100(1— a)% equal tail CI for R(¢) may be written as

From Result 1(iii), we can write

log F(¢)
S

r

=(1=Ry(1)™ —1. 24)

Using (24) in (23), 100(1 — a)% equal tail CI for R(¢) based on UMVUE may be

written as

From Result 1(iv), we can write

S R
log F () = >~ log(1— Ry, (1)) 25)

Using (25) in (23), 100(1— a)% equal tail CI for R(¢) based on MLE may be written as

2 (a
X \2 5
Tpr R = |:1 —exp { # log(1 _RML(t))} )

r

> (1—3 ~
1—exp{wlog(l—RML(t))}i|.

r
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The proposed PTCIs of R(¢) based on its UMVUE and MLE are as follows:

2 (2 R 1
IPT_R_U:[l_eXP{XZTT(Z)(l_RPT_U(t))H_1},
2 (12 R 1
1—exp{w((1—RP7_U(Z)),_l_1)}]
Ipr R 1= [1—CXP { Xz;f ) log(l_RPT ML(t))}

2 (12 -
1—€XP{% log(1 _RPT_ML(t>)}:|~

. 1
Now, we derive the CI for P. We know that P = d —— and from (13),
oy+o, 1+ U—f
T,
92 51; ~ F,; ,, using the same approach as above, 100(1— a)% equal tail CI for P may
019, ’
be written as
1 1
Igr p= ; : (26)
g Is, Is,
Lt Py, (1= 3) 1457 Fa0(3)
From Result 2(i), we can write
Py
, S, <1y,
S, _Jdi—d2+d3—d4’ 7! @)
1—d5’ e
where
T,
di=-L R
S

IO ) A A
d2—§< Viisreaz)
(I=1! S, \
d3= ;;(1 (i+1) l—z—z)!<71>’
M(r=1 /S,
d4= Z<_ z+r’(l—z—2)!<7l> ’

DI(r —1)! hy\*
d5= Z(— ,_1_l)v(1+i—1)!<5_,> .
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Using (27) in (26), we can write 100(1 — )% equal tail CI for P based on UMVUE as

Ier p v
1 1
5 T h > S, <)
a a
. [ 1+3 (dl—dZ-tl-]dB—d4)F21727 (1 - 5) 1+3 (dl—dZ-fl-]d3—d4)F21,27 (E)
1 1
| P 5 ’ 21
|1+ ;—(1_35)1:21’%(1—5) 145 P (3)
From Result 2(ii), we can write
IS —P

rT; PML

Using (28) in (26), we can write 100(1 — )% equal tail CI for P based on MLE as

1 1

by, (1-3) 14+ {52 Ey, (35))

ML

IETJ)?ML =
1+ {

The proposed PTCIs of P based on its UMVUE and MLE are then as follows:

Ipr pu

1 1
, S$.<T,

b

/ Ppr y a PPT U a
|1+ s g Pra (1—3) 145 szz,zr(a)

1 1
P P, ’ 210
! a I a
1+ (1PTd§)F212r( E) 1+3 (1PTdZs]>F212r<5)

1 1

Ipr p oy =
e

PPT ML PPTMI

Now we obtain the coverage probability of PTCI of o based on its UMVUE
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We know that T =20S, ~ y;,
P(o GIPTJLU):P{U € (a,00,4,0), )(27< )<ZUOS <1 (1_5)}
+P {0’ € (a,00,4,01),20,S, < x5, <%)}
+P {a & (0,30,0,50),2058, > 73, (1— %)}

7(5) _ w(-3)

2(r—1) and a, = 20r—1
Denoting & = Ui, we get
0

wherea, =

N

P(o EIPTJLU):P{(JI <é <ﬂ2’8)(27< >< T<8, <1_5)}

{)(2,< )<T<;(27< );T<8)(22,<%>}
P (3) < T < (1-3)i7> 020 (1-3)}

Plo€lpr , y)= {3)(%( >< T< 8)(27< %)IMZ(é\)

er i (<7 <mini2 (1) 222 (2)
(i (3) 05 (1-3) <7 < (1-3)

Let us denote P {8 x5, (3) < T <8 x5, (1— )} I, . (&) by A. Considering all possible

cases of &', we may write

or

_ Xb(%>
A+1—a, O<3<er(1*%>

A+1—aq, 3>X;r(( ;)

P(o €lpr o )= 2O
PT o U A+P{x (3)<T<8x.(3)} 1<é‘§h);2<;<5;>
A+Ps (1-3)<T< g (1-9)), 2 <s<

Similarly, coverage probability for other PTCI may be obtained.

6. NUMERICAL FINDINGS

By using the method of inverse cumulative density, we have generated 100 observations
by making use of the transformation y; = —(%>log G(x;,0) with o = 1.5. It may be
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noted here that G(x), being the cdf, follows the uniform distribution. Further suppose
that X’s, the failure times of experimental units, follow the Weibull distribution with
shape parameter y = 1.25 and scale parameter A = 10.

Estimates of o

For each combination of » and p, the UMVUEs and MLEs of ¢ are obtained. PTEs
of o based on UMVUEs and MLEs are further obtained. We replicated this process
1500 times in order to obtain 1500 estimates. Thereafter mean value of estimates and
corresponding mean square error (MSE) are obtained using these 1500 estimates. The
results are shown in Table 1. From Table 1 it may be observed that PTEs are more
close to the actual value of parameter and their MSE is less than the MSE of traditional
UMVUESs and MLEs, thereby establishing superiority of PTEs. Also, it is observed that
as r increases, PTEs tend to get closer to the true value.

Estimates of R(t)

For each combination of » and ¢, the UMVUEs, MLEs and PTEs of R(t) based on
UMVUE, MLE are obtained using the similar approach as mentioned above. The MSE
for each estimator is further obtained. The results may be seen in Table 2 and it may be
observed that PTEs are more close to the actual value of R(¢) and their MSE is less than
the MSE of traditional UMVUEs and MLEs of R(¢).

Estimates of P

For each combination of (7,/) and p, the UMVUEs, MLEs and PTEs of P based on
UMVUE, MLE are obtained besides the MSE for each estimator using the similar ap-
proach as mentioned above. The results may be seen in Table 3. Similar observations as
above may be drawn from Table 3 as well. Therefore, we may conclude that the PTEs
perform better than the classical estimators as the MSE of the PTEs is observed to be
less than the MSE of the classical estimators under the simulated data set.

Finally, the coverage probability (CP) of PTCI of ¢ is plotted against &', which may
be seen in Figure 1. It may be seen that for fixed values of 7, r and @ = 0.15, the CP,
as a function of 8, decreases monotonically. It then increases and crosses the line 1 —a,
and deceases again. It increases and decrease again until reaching the minimum value.
Finally, it increases and tends to line 1—a when & becomes large. Further, it is observed
that for small values of 7, the domination interval is wider than for large values of r.
Therefore, we may conclude that for some & in specific interval, the coverage probability
of PTCI of ¢ is more than that of equal tail confidence interval.
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TABLE 1
Estimates and corresponding mean square error of the pavameter o. The values are truncated to 4
decimal points, therefore few values in the column of mean square error being very small are

mentioned as 0.0000.
rop Estimates Mean square error
oy Opru_ Oomr Opr mr  MSE(@y) MSE(Gpr ) MSE(Gy,) MSE(Gpr 1)
2 0.5052 1.4549 0.5340 1.4562 0.0696 0.0020 0.0778 0.0019
55 4 0.2414 1.4361 0.2911 1.4384 0.0140 0.0041 0.0203 0.0038
5 0.1670 1.4427 0.2214 1.4448 0.0096 0.0033 0.0169 0.0030
2 0.6380 1.4641 0.6712 1.4654 0.0107 0.0013 0.0118 0.0011
60 4 0.3926 1.4433 0.4658 1.4471 0.0582 0.0032 0.0819 0.0028
5 0.3118 1.4524 0.4036 1.4558 0.0196 0.0023 0.0328 0.0020
2 1.1625 1.4862 1.2105 1.4883 0.0770 0.0002 0.0835 0.0001
75 4 1.3126 1.4873 1.5039 1.4973 0.0530 0.0002 0.0696 7.5217
5 1.4376 1.4947 1.7648 1.5124 0.3609 0.0000 0.5439 0.0002
TABLE 2

Estimates and corresponding mean square error of R(r). The values are truncated to 4 decimal
points, therefore few values in the column of mean square error being very small are mentioned as

0.0000.
r t  R(t) Estimates Mean Square Error
Ry(t) Rpr y(t) Ryr(t) Rpy yi(t) MSERy(1)) MSERpr y(t)) MSE(Ry; (1)) MSE(Rpy (1))
1.5 0.9092 0.8210 0.9044 0.8218  0.9045 0.0008 0.0000 0.0007 0.0000
55 2 0.8729 0.7722 0.8686 0.7737  0.8687 0.0009 0.0000 0.0009 0.0000
3 0.7987 0.6814 0.7924 0.6842  0.7925 0.0069 0.0000 0.0067 0.0000
1.5 0.9092 0.8555 0.9068 0.8557  0.9068 0.0003 0.0000 0.0003 0.0000
60 2 0.8729 0.8108 0.8694 0.8116 0.8694 0.0013 0.0000 0.0013 0.0000
3 0.7987 0.7256 0.7954 0.7277  0.7955 0.0001 0.0000 0.0001 0.0000
1.5 0.9092 0.9259 0.9102  0.9251 0.9101 0.0001 0.0000 0.0001 0.0000
75 2 0.8729 0.8933 0.8740 0.8929  0.8740 0.0000 0.0000 0.0000 0.0000
3 0.7987 0.8239 0.8005 0.8244  0.8005 0.0033 0.0000 0.0032 0.0000
TABLE 3

Estimates and corresponding mean square error of P. The values are truncated to 4 decimal points,
therefore few values in the column of mean square error being very small are mentioned as 0.0000.

(r,I) p P Estimates Mean Square Error
PU PPTU PML PPTML MSE(PU) MSE<PI’T U) MSE(PML> MSE(PPT ML)

2 0.5 0.4234 0.4963 0.4246 0.4964 0.0000 0.0000 0.0000 0.0000
(55,75) 4 0.5 0.4225 0.4952 0.4237 0.4953 0.0013 0.0000 0.0013 0.0000

5 0.5 0.4225 0.4958 0.4237 0.4959 0.0000 0.0000 0.0000 0.0000

2 0.5 0.5210 0.5011 0.5209 0.5010 0.0004 0.0000 0.0004 0.0000
60,60) 4 0.5 0.5226 0.5010 0.5224 0.5010 0.0027 0.0000 0.0026 0.0000

5 0.5 0.5227 0.5013 0.5225 0.5012 0.0008 0.0000 0.0008 0.0000

2 0.5 0.6037 0.5047 0.6023 0.5046 0.0007 0.0000 0.0007 0.0000

(75,55) 4 0.5 0.6025 0.5049 0.6011 0.5049 0.0003 0.0000 0.0003 0.0000
5 0.5 0.6036 0.5044 0.6022 0.5044 0.0003 0.0000 0.0003 0.0000
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Figure 1 - Coverage probability of PTCI of o plotted as a function of delta.
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SUMMARY

The present paper has developed the preliminary test estimators (PTEs) of the model parameter
raised to certain power, o/, and the two measures of reliability, namely, the reliability function,
R(r) and the reliability of an item or a system, P of an exponentiated distribution, under Type-
II censoring, based on their uniformly minimum variance unbiased estimators (UMVUEs) and
maximum likelthood estimators (MLEs). The preliminary test confidence intervals (PTCIs) are
also developed for o, R(¢) and P based on their UMVUEs and MLEs. Further, the paper has
derived expression for coverage probability of the PTCI of the model parameter, 0. Merits of the
proposed PTEs are also established through analysis of simulated numerical data.

Keywords: Exponentiated distributions; Preliminary test estimator; Type-II censoring; Uniformly
minimum variance unbiased estimator; Maximum likelithood estimator.



