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1. INTRODUCTION

Life testing experiments are usually time consuming and expensive in nature. To reduce
the cost and time of experimentation, various types of censoring schemes are used in the
life testing experiments. This paper dwells on Type-II censoring scheme for developing
preliminary test estimators (PTEs) and preliminary test confidence intervals (PTCIs) for
the parameters and measures of reliability with respect to exponentiated distributions.

The reliability function R(t ) is defined as the probability of failure-free operation
until time t . Thus, if the random variable X denotes the lifetime of an item or a sys-
tem, then R(t ) = P (X > t ). Another measure of reliability under stress strength setup
is the probability P = P (X > Y ), which represents the reliability of an item or a sys-
tem of random strength X subject to random stress Y . For details of work existing in
literature, one may refer to Bartholomew (1957, 1963), Pugh (1963), Basu (1964), Tong
(1974, 1975), Johnson (1975), Kelly et al. (1976), Sathe and Shah (1981), Chao (1982),
Awad and Gharraf (1986), Tyagi and Bhattacharya (1989), Chaturvedi and Rani (1997,
1998), Chaturvedi and Surinder (1999), Chaturvedi and Tomer (2002, 2003), Chaturvedi
and Singh (2006, 2008), Chaturvedi and Pathak (2012, 2013, 2014) and Chaturvedi and
Malhotra (2016, 2017, 2018).

Quite often we come across cases in which there exists some prior information in re-
spect of parameters, which may ultimately lead to improved inferential results. It is well
known that the estimators with the prior information (called the restricted estimators)
perform better than the estimators with no prior information (called the unrestricted
estimators).
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However, when the prior information is doubtful (or not sure), one may combine
the restricted and unrestricted estimator to obtain an estimator with better performance,
which leads to the PTEs. The preliminary test approach was first discussed by Bancroft
(1944) and further advancements were proposed by Sen and Saleh (1978), Saleh and Kib-
ria (1993), Kibria (2004), Kibria and Saleh (1993, 2004, 2005, 2006, 2010), Saleh (2006)
and Belaghi et al. (2014, 2015).

A lot of research work related with reliability estimation of different distributions
has taken place. For a brief review, one may refer to Ljubo (1965), Tadikamalla (1980),
Mudholkar and Srivastava (1993), Mudholkar et al. (1995), Mudholkar and Hutson (1996),
Gupta et al. (1998), Gupta and Kundu (1999, 2001a,b, 2002, 2003a,b), Jiang and Murthy
(1999), Gupta et al. (2002), Xie et al. (2002), Raqab (2002), Nassar and Eissa (2003, 2004),
Lai et al. (2003), Kundu et al. (2005), Kundu and Gupta (2005), Kundu and Raqab (2005),
Pal et al. (2006, 2007), Abdel-Hamid and AL-Hussaini (2009), Shawky and Abu-Zinadah
(2009), AL-Hussaini (2010), AL-Hussaini and Hussein (2011), Abdul-Moniem and Abdel-
Hameed (2012) and Chaturvedi and Vyas (2017).

In the present paper, we have dealt with an overview of exponentiated distributions
in Section 2. The relevant results on the uniformly minimum variance unbiased estima-
tors (UMVUEs) and the maximum likelihood estimators (MLEs) of parameter σ raised
to certain power p, the measures of reliability functions, namely, R(t ) and P under
Type-II censoring, as available in literature are reproduced in Section 3 for quick refer-
ence and use by us subsequently. In Section 4, we develop the PTEs for parameter σ
raised to certain power p, R(t ) and P respectively based on their UMVUEs and MLEs.
In Section 5, we derive the PTCIs for the parameter σ , R(t ) and P besides obtaining the
expression of coverage probability of the PTCI for the parameter ‘σ ’. Finally, Section 6
depicts the supporting numerical results.

2. EXPONENTIATED DISTRIBUTIONS

Let us consider a positive random variable X , with cumulative distribution function
(cdf) F (x). Then, for σ > 0,

G(x) = [F (x)]σ (1)

is also a cdf. Such distributions are referred to as exponentiated distributions. Denoting
by f (x), the probability density function corresponding to F (x), we can write

g (x) = σ[F (x)]σ−1 f (x) . (2)

Let us suppose that n items are put on life testing and failure of only first r items are
observed. Let us denote the r observed failure times by X(1) ≤ X(2) ≤ . . . ≤ X(r ), (0 <
r ≤ n) which implies that (n− r ) items have survived until X(r ).

Using (2), the joint pdf of n order statistics X(1) ≤X(2) ≤ . . .≤X(n) is given by

g ∗(x(1), x(2), . . . , x(n);σ) = n!σn
n
∏

i=1

f (x(i))[F (x(i))]
σ−1 (3)
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or

g ∗(x(1), x(2), . . . , x(n);σ) = n!σn
n
∏

i=1

exp{−σ(− log F (x(i)))}
�

f (x(i))

F (x(i))

�

. (4)

Considering the transformation, y(i) =− log F (x(i)), the joint pdf of Y(1) ≤ Y(2) ≤ . . .≤
Y(n), is given by

h∗(y(1), y(2), . . . , y(n);σ) = n!σn exp

�

−σ
n
∑

i=1

y(i)

�

(5)

on integrating out Y(r+1) ≤ Y(r+2) ≤ . . . ≤ Y(n) from (5), the joint pdf of Y(1) ≤ Y(2) ≤
. . .≤ Y(r ) is as follows

h∗∗(y(1), y(2), . . . , y(r );σ) = n(n− 1) . . . (n− r + 1)σn exp

¨

−σ
�

r
∑

i=1

y(i)+(n− r )y(r )

�«

.

Since F (xi ), being cdf, follows the U (0,1) distribution, − log F (x(i)) follows the expo-
nential distribution with mean life 1/σ .

Consider the transformation Zi = (n− i + 1)(Y(i)−Y(i−1)), i = 1,2, . . . , r

⇒
r
∑

i=1

zi =
�

r
∑

i=1

y(i)+(n− r )y(r )

�

= Sr .

Sr , being the sum of exponential variates, follows the gamma distribution with pdf

t (sr ,σ) =
σ r

Γr
s r−1

r exp(−σ sr ). (6)

3. AVAILABLE RESULTS ON CLASSICAL ESTIMATION

In the present paper, we intend to utilize appropriately certain results on UMVUE and
MLE for σ p , R(t ) and P , derived by Chaturvedi and Vyas (2017). These are consolidated
and reproduced below for quick reference through Result 1 and Result 2.

RESULT 1. The UMVUE and MLE of σ p and R(t ) are as follows:

(i) For (p 6= 0), the UMVUE of σ p , i.e.

bσ p
U =

Γr

Γ(r−p)
S−p

r , (p < r ).
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(ii) For (p 6= 0), the MLE of σ p , i.e.

bσ p
M L =

�

r
Sr

�p

.

(iii) The UMVUE of R(t ), i.e.

bRU (t ) = 1−
�

1+
log F (t )

Sr

�r−1

; − log F (t )< Sr .

(iv) The MLE of R(t ), i.e.

bRM L(t ) = 1− (F (t ))
r

Sr .

Suppose X and Y are two independent random variables following the classes of
distribution g1(x;σ1) and g2(y;σ2), respectively, where

g1(x;σ1) = σ1F1(x)
σ1−1 f1(x) ,

g2(y;σ2) = σ2F2(y)
σ2−1 f2(y) .

Let us suppose that n and m items are put on test corresponding to X and Y , respec-
tively. Further, the failure times of r and l units are observed from X and Y , respec-
tively.

As done earlier, Sr =
r
∑

j=1
Y1( j )+(n− r )Y1(r ) and Tl =

l
∑

j=1
Y2( j )+(m− l )Y2(l ).

RESULT 2. The UMVUE and MLE of P are respectively as follows:

(i) The UMVUE, i.e.

bPU =























(l − 1)
∫

Sr
Tl

0
(1− z)l−2

�

1−
�

1−
Tl

Sr
z
�r−1�

, Sr < Tl ,

(l − 1)
∫ 1

0
(1− z)l−2

�

1−
�

1−
Tl

Sr
z
�r−1�

, Sr ¾ Tl .

(ii) The MLE, i.e.

bPM L =
r Tl

r Tl + l Sr
.
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4. PROPOSED PRELIMINARY TEST ESTIMATORS

Let us suppose that the prior information of the parameter can be expressed in the form
of following hypothesis

H0 : σ = σ0 against H1 : σ 6= σ0.

From (6), we know that

2σSr ∼ χ
2
2r . (7)

Therefore, the critical region is given by

(0< Sr < k0)∪ (k1 < Sr <∞),

where k0 =
1

2σ0
χ 2

2r

�α
2

�

, k1 =
1

2σ0
χ 2

2r

�

1− α
2

�

and α is the level of significance. Let us
suppose

χ 2
2r

�α

2

�

=C2 and χ 2
2r

�

1− α
2

�

=C1 (8)

and I (A) be the indicator function of the following set

A= {χ 2
2r ;C2 ≤ χ

2
2r ≤C1} .

The PTEs of σ p based on UMVUE and MLE are then given respectively by

bσ p
PT _U = bσ

p
U − (bσ

p
U −σ

p
0 )I (A) (9)

and

bσ p
PT _M L = bσ

p
M L− (bσ

p
M L−σ

p
0 )I (A), (10)

where bσ p
U and bσ p

M L are as defined in Result 1(i) and Result 1(ii), respectively.
Next, we find the PTEs of R(t ) and P based on UMVUEs and MLEs. Using Re-

sult 1(iii) and Result 1(iv) on the UMVUE and MLE of R(t ), the PTEs of R(t ) based on
UMVUE and MLE are given respectively by

bRPT _U (t ) = bRU (t )− (bRU (t )−R0(t ))I (A), (11)

where R0(t ) = 1− F (t )σ0 , under H0 and

bRPT _M L(t ) = bRM L(t )− (bRM L(t )−R0(t ))I (A) . (12)

Let us now derive the PTEs of P based on UMVUE and MLE. We know that

P =
σ1

σ1+σ2
.
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Suppose, we want to test

H0 : P = P0 against H1 : P 6= P0

P = P0 gives σ1 = kσ2 where k =
P0

1− P0
.

Therefore, H0 is equivalent to

H0 : σ1 = kσ2 against H1 : σ1 6= kσ2 .

We know that

2σ1Sr ∼ χ
2
2r and 2σ2Tl ∼ χ

2
2l .

Therefore,

σ1Sr l
σ2Tl r

∼ F2r,2l . (13)

The critical region for testing H0 : P = P0 is given by
�

Sr

Tl
< k2

�

∪
�

k3 <
Sr

Tl

�

,

where

k2 =
r

k l
F2r,2l

�α

2

�

and k3 =
r

k l
F2r,2l

�

1− α
2

�

. (14)

Let I (B) be indicator function of the set

B = {F2r,2l ;C4 ≤ F2r,2l ≤C3},

where C3 = F2r,2l

�

1− α
2

�

; C4 = F2r,2l

�α
2

�

.
As seen earlier in Result 2(i) and Result 2(ii), the UMVUE and MLE of P when X ,

Y belong to same family of distribution are respectively given by

bPU =























(l − 1)
∫

Sr
Tl

0
(1− z)l−2

�

1−
§

1−
Tl

S r
z
ªr−1�

, Sr < Tl ,

(l − 1)
∫ 1

0
(1− z)l−2

�

1−
�

1−
Tl

Sr
z
�r−1�

, Sr ¾ Tl

and

bPM L =
r Tl

r Tl + l Sr
.
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The PTEs of P based on UMVUE and MLE are then obtained respectively by

bPPT _U = bPU − (bPU − P0)I (B) (15)

and

bPPT _M L = bPM L− (bPM L− P0)I (B), (16)

where P0 is the assumed value of P under H0.

5. PRELIMINARY TEST CONFIDENCE INTERVALS

In this section, we derive the PTCIs for σ , R(t ) and P based on their UMVUEs and
MLEs.

From (7), we know that, 2σSr ∼ χ 2
2r

⇒ P

¨

χ 2
2r

�α
2

�

2Sr
<σ <

χ 2
2r

�

1− α
2

�

2Sr

«

= 1−α, (17)

where α is the significance level.
From Result 1(i) and Result 1(ii), we know that bσU =

r−1
Sr

and bσM L =
r

Sr
, therefore,

100(1−α)% equal tail confidence interval (CI) for σ based on UMVUE and MLE may
be written as

IET _σ_U =
�

χ 2
2r

�α
2

�

2(r − 1)
bσU ,

χ 2
2r

�

1− α
2

�

2(r − 1)
bσU

�

(18)

and

IET _σ_M L =
�

χ 2
2r

�α
2

�

2r
bσM L,

χ 2
2r

�

1− α
2

�

2r
bσM L

�

. (19)

The proposed PTCI of σ based on UMVUE and MLE are as follows:

IPT _σ_U =
�

χ 2
2r

�α
2

�

2(r − 1)
bσPT _U ,

χ 2
2r

�

1− α
2

�

2(r − 1)
bσPT _U

�

(20)

IPT _σ_M L =
�

χ 2
2r

�α
2

�

2r
bσPT _M L,

χ 2
2r

�

1− α
2

�

2r
bσPT _M L

�

, (21)

where bσPT _U and bσPT _M L are as defined in (9) and (10), respectively.
Next we derive the PTCI for R(t ). Using (1), we know that

R(t ) = 1− exp{σ log F (t )}. (22)
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Using (17) and (22), we can write

P

¨

1− exp

�

χ 2
2r

�α
2

�

2Sr
log F (t )

�

< R(t )< 1− exp

�

χ 2
2r

�

1− α
2

�

2Sr
log F (t )

�«

= 1−α.

Therefore, 100(1−α)% equal tail CI for R(t )may be written as

IET _R =
�

1− exp

�

χ 2
2r

�α
2

�

2Sr
log F (t )

�

, 1− exp

�

χ 2
2r

�

1− α
2

�

2Sr
log F (t )

��

. (23)

From Result 1(iii), we can write

log F (t )
Sr

= (1− bRU (t ))
1

r−1 − 1. (24)

Using (24) in (23), 100(1− α)% equal tail CI for R(t ) based on UMVUE may be
written as

IET _R_U =
�

1− exp

¨

χ 2
2r

�α
2

�

2
((1− bRU (t ))

1
r−1 − 1)

«

,

1− exp

¨

χ 2
2r

�

1− α
2

�

2
((1− bRU (t ))

1
r−1 − 1)

«�

From Result 1(iv), we can write

log F (t ) =
Sr

r
log(1− bRM L(t )). (25)

Using (25) in (23), 100(1−α)% equal tail CI for R(t ) based on MLE may be written as

IET _R_M L =
�

1− exp

¨

χ 2
2r

�α
2

�

2r
log(1− bRM L(t ))

«

,

1− exp

¨

χ 2
2r

�

1− α
2

�

2r
log(1− bRM L(t ))

«�

.
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The proposed PTCIs of R(t ) based on its UMVUE and MLE are as follows:

IPT _R_U =
�

1− exp

¨

χ 2
2r

�α
2

�

2
(1− bRPT _U (t ))

1
r−1 − 1

«

,

1− exp

¨

χ 2
2r

�

1− α
2

�

2
((1− bRPT _U (t ))

1
r−1 − 1)

«�

IPT _R_M L =
�

1− exp

¨

χ 2
2r

�α
2

�

2r
log(1− bRPT _M L(t ))

«

,

1− exp

¨

χ 2
2r

�

1− α
2

�

2r
log(1− bRPT _M L(t ))

«�

.

Now, we derive the CI for P . We know that P =
σ1

σ1+σ2
=

1
1+ σ2

σ1

and from (13),

σ2Tl r
σ1Sr l

∼ F2l ,2r using the same approach as above, 100(1−α)% equal tail CI for P may

be written as

IET _P =





1

1+ l Sr
r Tl

F2l ,2r

�

1− α
2

�

,
1

1+ l Sr
r Tl

F2l ,2r

�α
2

�



 . (26)

From Result 2(i), we can write

Sr

Tl
=



















bPU

d1− d2+ d3− d4
, Sr < Tl ,

bPU

1− d5
, Tl ¶ Sr ,

(27)

where

d1=
Tl

Sr
,

d2=
l−1
∑

i=0

(−1)i
(l − 1)!

i !(l − i − 1)!

�

Sr

Tl

�i−1

,

d3=
l−2
∑

i=0

(−1)i
(l − 1)!

(i + 1)!(l − i − 2)!

�

Sr

Tl

�i

,

d4=
l−2
∑

i=0

(−1)i
(l − 1)!(r − 1)!
(i + r )!(l − i − 2)!

�

Sr

Tl

�i

,

d5=
r−1
∑

i=0

(−1)i
(l − 1)!(r − 1)!

(r − 1− i)!(l + i − 1)!

�

Tl

Sr

�i+1

.
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Using (27) in (26), we can write 100(1−α)% equal tail CI for P based on UMVUE as

IET _P_U

=







































1

1+ l
r

bPU
(d1−d2+d3−d4)F2l ,2r

�

1− α
2

�

,
1

1+ l
r

bPU
(d1−d2+d3−d4)F2l ,2r

�α
2

�



, Sr < Tl





1

1+ l
r

bPU
(1−d5)F2l ,2r

�

1− α
2

�

,
1

1+ l
r

bPU
(1−d5)F2l ,2r

�α
2

�



 , Sr ¾ Tl

From Result 2(ii), we can write

l Sr

r Tl
=

1− bPM L

bPM L

. (28)

Using (28) in (26), we can write 100(1−α)% equal tail CI for P based on MLE as

IET _P_M L =







1

1+
n

1−bPM L
bPM L

o

F2l ,2r

�

1− α
2

�

,
1

1+
n

1−bPM L
bPM L

F2l ,2r

�α
2

�

o






.

The proposed PTCIs of P based on its UMVUE and MLE are then as follows:

IPT _P_U

=













































1

1+ l
r

bPPT _U

(d1−d2+d3−d4)F2l ,2r

�

1− α
2

�

,
1

1+ l
r

bPPT _U

(d1−d2+d3−d4)F2l ,2r

�α
2

�






, Sr <Tl







1

1+ l
r

bPPT _U

(1−d5)F2l ,2r

�

1− α
2

�

,
1

1+ l
r

bPPT _U

(1−d5)F2l ,2r

�α
2

�






, Sr ¾ Tl

IPT _P_M L =









1

1+
§

1−bPPT _M L

bPPT _M L

ª

F2l ,2r

�

1− α
2

�

,
1

1+
§

1−bPPT _M L

bPPT _M L

ª

F2l ,2r

�α
2

�









Now we obtain the coverage probability of PTCI of σ based on its UMVUE
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We know that T = 2σSr ∼ χ 2
2r

P (σ ∈ IPT _σ_U ) = P
n

σ ∈ (a1σ0,a2σ0),χ
2
2r

�α

2

�

< 2σ0Sr <χ
2
2r

�

1− α
2

�o

+ P
n

σ ∈ (a1bσU ,a2bσU ), 2σ0Sr <χ
2
2r

�α

2

�o

+ P
n

σ ∈ (a1bσU ,a2bσU ), 2σ0Sr >χ
2
2r

�

1− α
2

�o

,

where a1 =
χ 2

2r ( α2 )
2(r−1) and a2 =

χ 2
2r (1− α

2 )
2(r−1) .

Denoting δ = σ
σ0

, we get

P (σ ∈ IPT _σ_U ) = P
n

a1 <δ < a2;δχ 2
2r

�α

2

�

< T <δχ 2
2r

�

1− α
2

�o

+ P
n

χ 2
2r

�α

2

�

< T <χ 2
2r

�

1− α
2

�

;T <δχ 2
2r

�α

2

�o

+ P
n

χ 2
2r

�α

2

�

< T <χ 2
2r

�

1− α
2

�

;T >δχ 2
2m

�

1− α
2

�o

or

P (σ ∈ IPT _σ_U ) = P
n

δχ 2
2r

�α

2

�

< T <δχ 2
2r

�

1− α
2

�

Ia1a2
(δ)

+ P
n

χ 2
2r

�α

2

�

< T <min
�

χ 2
2r

�

1− α
2

�

,δχ 2
2r

�α

2

��o

+ P
n

max
�

χ 2
2r

�α

2

�

,δχ 2
2r

�

1− α
2

�

< T <χ 2
2r

�

1− α
2

��o

.

Let us denote P
�

δχ 2
2r

�α
2

�

< T <δχ 2
2r

�

1− α
2

�	

Ia1a2
(δ) by A. Considering all possible

cases of δ, we may write

P (σ ∈ IPT _σ_U ) =











































A+ 1−α, 0<δ ≤ χ 2
2r ( α2 )

χ 2
2r (1− α

2 )

A+ 1−α, δ >
χ 2

2r (1− α
2 )

χ 2
2r ( α2 )

A+ P
�

χ 2
2r

�α
2

�

< T <δχ 2
2r

�α
2

�	

, 1<δ ≤ χ 2
2r (1− α

2 )
χ 2

2r ( α2 )

A+ P
�

δχ 2
2r

�

1− α
2

�

< T <χ 2
2r

�

1− α
2

�	

,
χ 2

2r ( α2 )
χ 2

2r (1− α
2 )
<δ ≤ 1

Similarly, coverage probability for other PTCI may be obtained.

6. NUMERICAL FINDINGS

By using the method of inverse cumulative density, we have generated 100 observations
by making use of the transformation yi = −

�

1
σ

�

logG(xi ,σ) with σ = 1.5. It may be
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noted here that G(x), being the cdf, follows the uniform distribution. Further suppose
that Xi ’s, the failure times of experimental units, follow the Weibull distribution with
shape parameter γ = 1.25 and scale parameter λ= 10.

Estimates of σ

For each combination of r and p, the UMVUEs and MLEs of σ are obtained. PTEs
of σ based on UMVUEs and MLEs are further obtained. We replicated this process
1500 times in order to obtain 1500 estimates. Thereafter mean value of estimates and
corresponding mean square error (MSE) are obtained using these 1500 estimates. The
results are shown in Table 1. From Table 1 it may be observed that PTEs are more
close to the actual value of parameter and their MSE is less than the MSE of traditional
UMVUEs and MLEs, thereby establishing superiority of PTEs. Also, it is observed that
as r increases, PTEs tend to get closer to the true value.

Estimates of R(t )

For each combination of r and t , the UMVUEs, MLEs and PTEs of R(t ) based on
UMVUE, MLE are obtained using the similar approach as mentioned above. The MSE
for each estimator is further obtained. The results may be seen in Table 2 and it may be
observed that PTEs are more close to the actual value of R(t ) and their MSE is less than
the MSE of traditional UMVUEs and MLEs of R(t ).

Estimates of P

For each combination of (r, l ) and p, the UMVUEs, MLEs and PTEs of P based on
UMVUE, MLE are obtained besides the MSE for each estimator using the similar ap-
proach as mentioned above. The results may be seen in Table 3. Similar observations as
above may be drawn from Table 3 as well. Therefore, we may conclude that the PTEs
perform better than the classical estimators as the MSE of the PTEs is observed to be
less than the MSE of the classical estimators under the simulated data set.

Finally, the coverage probability (CP) of PTCI of σ is plotted against δ, which may
be seen in Figure 1. It may be seen that for fixed values of n, r and α = 0.15, the CP,
as a function of δ, decreases monotonically. It then increases and crosses the line 1−α,
and deceases again. It increases and decrease again until reaching the minimum value.
Finally, it increases and tends to line 1−αwhenδ becomes large. Further, it is observed
that for small values of r , the domination interval is wider than for large values of r .
Therefore, we may conclude that for someδ in specific interval, the coverage probability
of PTCI of σ is more than that of equal tail confidence interval.
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TABLE 1
Estimates and corresponding mean square error of the parameter σ . The values are truncated to 4

decimal points, therefore few values in the column of mean square error being very small are
mentioned as 0.0000.

r p Estimates Mean square error
bσU bσPT _U bσM L bσPT _M L M SE(bσU ) M SE(bσPT _U ) M SE(bσM L) M SE(bσPT _M L)

2 0.5052 1.4549 0.5340 1.4562 0.0696 0.0020 0.0778 0.0019
55 4 0.2414 1.4361 0.2911 1.4384 0.0140 0.0041 0.0203 0.0038

5 0.1670 1.4427 0.2214 1.4448 0.0096 0.0033 0.0169 0.0030
2 0.6380 1.4641 0.6712 1.4654 0.0107 0.0013 0.0118 0.0011

60 4 0.3926 1.4433 0.4658 1.4471 0.0582 0.0032 0.0819 0.0028
5 0.3118 1.4524 0.4036 1.4558 0.0196 0.0023 0.0328 0.0020
2 1.1625 1.4862 1.2105 1.4883 0.0770 0.0002 0.0835 0.0001

75 4 1.3126 1.4873 1.5039 1.4973 0.0530 0.0002 0.0696 7.5217
5 1.4376 1.4947 1.7648 1.5124 0.3609 0.0000 0.5439 0.0002

TABLE 2
Estimates and corresponding mean square error of R(t ). The values are truncated to 4 decimal

points, therefore few values in the column of mean square error being very small are mentioned as
0.0000.

r t R(t ) Estimates Mean Square Error
bRU (t ) bRPT _U (t ) bRM L(t ) bRPT _M L(t ) M SE(bRU (t )) M SE(bRPT _U (t )) M SE(bRM L(t )) M SE(bRPT _M L(t ))

1.5 0.9092 0.8210 0.9044 0.8218 0.9045 0.0008 0.0000 0.0007 0.0000
55 2 0.8729 0.7722 0.8686 0.7737 0.8687 0.0009 0.0000 0.0009 0.0000

3 0.7987 0.6814 0.7924 0.6842 0.7925 0.0069 0.0000 0.0067 0.0000
1.5 0.9092 0.8555 0.9068 0.8557 0.9068 0.0003 0.0000 0.0003 0.0000

60 2 0.8729 0.8108 0.8694 0.8116 0.8694 0.0013 0.0000 0.0013 0.0000
3 0.7987 0.7256 0.7954 0.7277 0.7955 0.0001 0.0000 0.0001 0.0000
1.5 0.9092 0.9259 0.9102 0.9251 0.9101 0.0001 0.0000 0.0001 0.0000

75 2 0.8729 0.8933 0.8740 0.8929 0.8740 0.0000 0.0000 0.0000 0.0000
3 0.7987 0.8239 0.8005 0.8244 0.8005 0.0033 0.0000 0.0032 0.0000

TABLE 3
Estimates and corresponding mean square error of P . The values are truncated to 4 decimal points,
therefore few values in the column of mean square error being very small are mentioned as 0.0000.

(r, l ) p P Estimates Mean Square Error
bPU

bPPT _U
bPM L

bPPT _M L M SE(bPU ) M SE(bPPT _U ) M SE(bPM L) M SE(bPPT _M L)
2 0.5 0.4234 0.4963 0.4246 0.4964 0.0000 0.0000 0.0000 0.0000

(55,75) 4 0.5 0.4225 0.4952 0.4237 0.4953 0.0013 0.0000 0.0013 0.0000
5 0.5 0.4225 0.4958 0.4237 0.4959 0.0000 0.0000 0.0000 0.0000
2 0.5 0.5210 0.5011 0.5209 0.5010 0.0004 0.0000 0.0004 0.0000

60,60) 4 0.5 0.5226 0.5010 0.5224 0.5010 0.0027 0.0000 0.0026 0.0000
5 0.5 0.5227 0.5013 0.5225 0.5012 0.0008 0.0000 0.0008 0.0000
2 0.5 0.6037 0.5047 0.6023 0.5046 0.0007 0.0000 0.0007 0.0000

(75,55) 4 0.5 0.6025 0.5049 0.6011 0.5049 0.0003 0.0000 0.0003 0.0000
5 0.5 0.6036 0.5044 0.6022 0.5044 0.0003 0.0000 0.0003 0.0000
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Figure 1 – Coverage probability of PTCI of σ plotted as a function of delta.
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SUMMARY

The present paper has developed the preliminary test estimators (PTEs) of the model parameter
raised to certain power, σ p , and the two measures of reliability, namely, the reliability function,
R(t ) and the reliability of an item or a system, P of an exponentiated distribution, under Type-
II censoring, based on their uniformly minimum variance unbiased estimators (UMVUEs) and
maximum likelihood estimators (MLEs). The preliminary test confidence intervals (PTCIs) are
also developed for σ , R(t ) and P based on their UMVUEs and MLEs. Further, the paper has
derived expression for coverage probability of the PTCI of the model parameter, σ . Merits of the
proposed PTEs are also established through analysis of simulated numerical data.

Keywords: Exponentiated distributions; Preliminary test estimator; Type-II censoring; Uniformly
minimum variance unbiased estimator; Maximum likelihood estimator.


