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1. INTRODUCTION

Entropy, as a measure of randomness contained in a probability distribution, is a fun-
damental concept in information theory and cryptography. Today, information theory
is considered to be a very fundamental field which intersects with physics (statistical
mechanics), mathematics (probability theory), electrical engineering (communication
theory) and computer science (Kolmogorov complexity) etc. The average amount of
uncertainty associated with the nonnegative continuous random variable X can be mea-
sured using the differential entropy function

H ( f ) =−
∫ ∞

0
f (x) log f (x)d x , (1)

a continuous counterpart of the Shannon (1948) entropy in the discrete case, where f (x)
denotes the probability density function (pdf) of the random variable X . A huge liter-
ature devoted to the characterizations, generalizations and applications of the Shannon
entropy measure is available, refer to Cover and Thomas (2006). A generalization of
order (α,β) of the entropy (1) is the Varma (1966) entropy defined as

H (α,β)( f ) =
1

(β−α)
log

�∫ ∞

0
f α+β−1(x)d x

�

; β 6= α, β− 1<α <β, β≥ 1 . (2)

When β = 1, H (α,β)( f ) reduces to Hα( f ) = 1
(1−α) log

�∫∞
0 f α(x)d x

�

, the Rényi (1961)

entropy, and when β = 1 and α −→ 1, H (α,β)( f ) −→ H ( f ) given in (1). Varma’s en-
tropy measure is much more flexible due to the parameters α and β, enabling several

1 Corresponding Author. E-mail: vikas_iitr82@yahoo.co.in



300 V. Kumar and N. Singh

measurements of uncertainty within a given distribution and increase the scope of ap-
plication. In recent years, Varma’s entropy has been used by many researchers in the con-
text of information theory, we refer to Kayal and Vellaisamy (2011), and Kayal (2015).
Suppose that X1,X2, · · · ,Xn are n independent and identically distributed (iid) random
variables with a common absolutely continuous cumulative distribution function (cdf)
F (x) and pdf f (x). The order statistics of this sample is defined as arrangement of
X1,X2, · · · ,Xn from the smallest to the largest denoted by X1:n ≤ X2:n ≤ · · · ≤ Xn:n .
Then Xi :n is called the i th order statistics and its pdf is given by

fi :n(x) =
1

B(i , n− i + 1)
F (x)i−1(1− F (x))n−i f (x), (3)

where B(a, b ) =
∫ 1

0 xa−1(1− x)b−1d x,a > 0, b > 0, is the beta function with parameters
a and b . Order statistics plays an important role in various applied practical problems,
we refer to Arnold et al. (1992) and David and Nagaraja (2003) for more details. One
of the important applications of order statistics is to construct median filters for image
and signal processing. Various authors have worked on information properties of order
statistics. Wong and Chen (1990) showed that the difference between the entropy of
i th order statistics and the average entropy is a constant. Ebrahimi et al. (2004) have
explored the properties of Shannon entropy, Kullback-Leibler information, and mutual
information for order statistics. Similar results on generalized residual entropy for order
statistics have been derived by Abbasnejad and Arghami (2011), Zarezadeh and Asadi
(2010), Thapliyal et al. (2015) and Baratpour and Khammar (2016).

All the theoretical investigations and applications using these information measures
are based on the distribution function. A probability distribution can be specified either
in terms of the distribution function or by the quantile functions (QF), defined by

Q(u) = F −1(u) = inf{x | F (x)≥ u}, 0≤ u ≤ 1. (4)

Quantile functions (QFs) have several properties that are not shared by distribution
functions. For example, the sum of two QFs is again a QF. Sometimes, the quantile-
based approach is better in terms of tractability. In many cases, QF is more convenient as
it is less influenced by extreme observations, and thus provides a straightforward analysis
with a limited amount of information. It is easier to generate random numbers from the
QF. In reliability analysis, a single long-term survivor can have a marked effect on mean
life, especially in the case of heavy-tailed models which are commonly encountered for
lifetime data. In such cases, quantile-based estimates are generally found to be more
precise and robust against outliers. However, the use of QFs in the place of F provides
new models, alternative methodology, easier algebraic manipulations, and methods of
analysis in certain cases and some new models and characterizations that are difficult to
derive by using distribution function (Gilchrist, 2000; Nair et al., 2013; Parzen, 1979).
There are explicit general distribution forms for the QF of order statistics. The quantile-
based Shannon entropy of i th order statistics studied by Sunoj et al. (2017). Considering
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the importance of generalized entropy and its order statistics, we extend the concept of
generalized quantile entropy using order statistics. Motivated by these, in the present
study we consider Varma’s entropy for order statistics for residual and reversed residual
(past) lifetime using the QFs and proved some characterization results of these.

From (4), we have F Q(u) = u, then pdf of the i th order statistics (3) becomes

fi :n(u) = fi :n(Q(u)) =
1

B(i , n− i + 1)
u i−1(1− u)n−i f (Q(u))

=
1

B(i , n− i + 1)
u i−1(1− u)n−i 1

q(u)

(5)

Sunoj and Sankaran (2012) have considered the quantile-based Shannon entropy and
its residual form, defined as

Ḩ=
∫ 1

0
log q(p)d p, (6)

and

Ḩ(u) = log(1− u)+ (1− u)−1
∫ 1

u
log q(p)d p, (7)

respectively, where q(u) = dQ(u)
d u is the quantile density function, the mean of the dis-

tribution is E(X ) =
∫ 1

0 Q(p)d p =
∫ 1

0 (1− p)q(p)d p and assumed to be finite. Defining
the density quantile function by f Q(u) = f (Q(u)) and the quantile density function
by q(u), we have

q(u) f (Q(u)) = 1. (8)

Kumar and Rani (2018) proposed the quantile version of Varma’s entropy of order
(α,β), which was defined as

Ḩ(α,β)
X =

1
(β−α)

log
�∫ 1

0
(q(p))2−α−βd p

�

; β 6= α, β− 1<α <β, β≥ 1 , (9)

and studied its properties. For more details we refer to Baratpour and Khammar (2018).
When β= 1 and α−→ 1, the measure (9) reduces to (6).

The paper is organized as follows. In Section 2, we introduce a quantile version of
generalized entropy (2) for i th order statistics, and investigate it for various type of uni-
variate distributions as well as provides bound for it. Also we show that the generalized
quantile information between Xi :n and X is distribution free. In Section 3, we express
the quantile-based generalized residual entropy (GRE) of order statistics and study its
important properties. Section 4 is devoted to the characterization result for first order
statistics. In Section 5, characterization result for quantile-based generalized entropy of
order statistics for reversed residual lifetime has been studied for parallel systems.
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2. GENERALIZED QUANTILE ENTROPY FOR Xi :n

Analogous to (2), Thapliyal and Taneja (2012) proposed the two parameter generalized
entropy for the i th order statistics Xi :n as

H (α,β)( fi :n) =
1

β−α
log

�∫ ∞

0
( fi :n(x))

α+β−1d x
�

; β 6= α, β− 1<α <β, β≥ 1 (10)

and studied some properties of it. Here fi :n(x) is the pdf of i th order statistics that is
defined by (3). In the following result, we will show that the quantile-based generalized
entropy of order statistics Xi :n can be represented in terms of quantile-based generalized
entropy of order statistics of standard uniform distribution.

THEOREM 1. The quantile version of generalized entropy (2) of Xi :n can be expressed
as

Ḩ(α,β)
Xi :n

= Ḩ(α,β)
Ui :n

+
1

β−α
log Egi

�

q2−α−β(Yi )
�

, (11)

where Ḩ(α,β)
Ui :n

denotes the quantile-based generalized entropy of Xi :n from standard uniform
distribution, Egi

(X ) denotes expectation of X over gi and Yi ∼ gi is the beta density with
parameters (α+β− 1)(i − 1)+ 1 and (α+β− 1)(n− i)+ 1 .

PROOF. Using (4), the quantile-based generalized entropy of order (α,β) of i th or-
der statistics is defined as

Ḩ(α,β)
Xi :n

= 1
β−α log

�

∫ 1
0 f α+β−1

i :n (Q(u))d (Q(u))
�

.

From (5), we have

Ḩ(α,β)
Xi :n

=
1

β−α
log

¨

1

(B(i , n− i + 1))α+β−1

«

×
∫ 1

0
u (α+β−1)(i−1)(1− u)(α+β−1)(n−i)(q(u))2−α−βd u

=
1

β−α
log

¨

B{(α+β− 1)(i − 1)+ 1, (α+β− 1)(n− i)+ 1}
(B(i , n− i + 1))α+β−1

«

×
∫ 1

0

u (α+β−1)(i−1)(1− u)(α+β−1)(n−i)(q(u))2−α−βd u
B{(α+β− 1)(i − 1)+ 1, (α+β− 1)(n− i)+ 1}

,

(12)

where the first term inside the parenthesis is the quantile-based generalized entropy for
Xi :n of standard uniform distribution, which completes the proof. 2

For some specific univariate continuous distributions, the expression (11) is evalu-
ated as given below in Table 1.
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TABLE 1
Quantile-based generalized entropy Ḩ(α,β)

Xi :n
of i t h order statistics for different lifetime distributions.

Distribution Quantile function Q(u) GRQE Ḩ(α,β)
Xi :n

Uniform a+(b − a)u = 1
β−α log

�

(b−a)(2−α−β)B{(α+β−1)(i−1)+1, (α+β−1)(n−i)+1}
(B(i , n−i+1))(α+β−1)

�

Exponential −λ−1 log(1− u) = 1
β−α log

�

λα+β−2B{(α+β−1)(i−1)+1, (α+β−1)(n−i+1)}
(B(i , n−i+1))α+β−1

�

Pareto-I b (1− u)−
1
a = 1

β−α log
�

( b
a )

2−α−βB{(α+β−1)(i−1)+1, (α+β−1)(n−i+1)+ α+β−2
a }

(B(i , n−i+1))α+β−1

�

Log-logistic 1
a

� u
1−u

�
1
b = 1

β−α log

�

(ab )α+β−2B{(α+β−1)i+ (2−α−β)b , (α+β−1)(n−i+1)+ α+β−2
b )}

(B(i , n−i+1))α+β−1

�

Generalized Pareto b
a

h

(1− u)−
a

a+1 − 1
i

= 1
β−α log

�

B{(α+β−1)(i−1)+1, (α+β−1)(n−i)+(α+β−2)( 2a+1
a+1 )+1}

( b
a+1 )

α+β−2(B(i , n−i+1))α+β−1

�

Finite range b (1− (1− u)
1
a ) = 1

β−α log
�

( b
a )

2−α−βB{(α+β−1)(i−1)+1, (α+β−1)(n−i+1)+ 2−α−β
a }

(B(i , n−i+1))α+β−1

�

Power distribution au
1
b = 1

β−α log

�

( a
b )

2−α−βB{(α+β−1)i+ 2−α−β
b , (α+β−1)(n−i)+1}

(B(i , n−i+1))α+β−1

�

Govindarajulu a{(b + 1)u b − b u b+1} = 1
β−α log

�

{ab (b+1)}2−α−βB{(α+β−1)i+b (2−α−β), (α+β−1)(n−i−1)+2)}
(B(i , n−i+1))α+β−1

�

Next we obtain the upper (lower) bound of quantile-based generalized entropy for
order statistics (11) in terms of quantile entropy (9). We prove the following result.

THEOREM 2. For any random variable X , with quantile-based generalized entropy
Ḩ(α,β)

X <∞, the quantile-based Varma entropy of i th order statistics Xi :n , i = 1,2, · · · , n is
bounded above as

Ḩ(α,β)
Xi :n

≤Ci + Ḩ(α,β)
X , (13)

where
Ci = Ḩ(α,β)

Ui :n
+

1
β−α

logBi ,

and bounded below as

Ḩ(α,β)
Xi :n

≥ Ḩ(α,β)
Ui :n

+
α+β− 2
β−α

log M , (14)

where M = 1
q(m) <∞, m = sup{u : q(u)≥ 1

M } is the mode of the distribution and q(u) is
quantile density function of the random variable X and Bi represents the beta distribution
with parameter (α+β− 1)(i − 1)+ 1 and (α+β− 1)(n− i)+ 1.

PROOF. Let gi and mi be the pdf and the mode of beta distribution with parameter
(α+β− 1)(i − 1) + 1 and (α+β− 1)(n− i) + 1, respectively. Since mode of the beta
distribution is mi =

i−1
n−1 . Thus,

gi (y)≤ Bi = gi (mi ) =
m(α+β−1)(i−1)+1

i (1−mi )
(α+β−1)(n−i)+1

B{(α+β− 1)(i − 1)+ 1, (α+β− 1)(n− i)+ 1}
.
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For β> 1, β− 1<α <β, from (12)

Ḩ(α,β)
Xi :n
− Ḩ(α,β)

Ui :n
=

1
β−α

log
∫ 1

0
gi (u)(q(u))

2−α−βd u

≤ 1
β−α

logBi

∫ 1

0
(q(u))2−α−βd u

=
1

β−α
logBi +

1
β−α

log
�∫ 1

0
(q(u))2−α−βd u

�

=
1

β−α
logBi + Ḩ(α,β)

X .

which gives (13). From (11) we can write

Ḩ(α,β)
Xi :n

≥ Ḩ(α,β)
Ui :n

+
�

1
β−α

�

log
∫ 1

0
gi (u)M

α+β−2d u,

= Ḩ(α,β)
Ui :n

+
�

α+β− 2
β−α

�

log M .

This complete the proof. 2

EXAMPLE 3. For uniform distribution over the interval (a, b ), we have Ḩ(α,β)
X =

�

α+β−2
α−β

�

log (b − a). Substituting i = 1 and i = n in Table 1 for uniform distribution, we
obtain

Ḩ(α,β)
U1:n

= Ḩ(α,β)
Un:n

=
1

β−α
{(α+β− 1) log n− log ((α+β− 1)(n− 1)+ 1)}

and C1 =Cn =
�

α+β−1
β−α

�

log n . Hence, using (13) we get

Ḩ(α,β)
X1:n

≤
�

α+β− 1
β−α

�

log n+
�

α+β− 2
α−β

�

log(b − a).

Also, for uniform distribution over the interval (a, b ), M = 1
b−a . Using (14) we get

Ḩ(α,β)
X1:n

≥ 1
β−α

{(α+β− 1) log n− log ((α+β− 1)(n− 1)+ 1)}

+
�

α+β− 2
α−β

�

log (b − a) .

Thus, for uniform distribution, we have

1
β−α

{(α+β− 1) log n− log ((α+β− 1)(n− 1)+ 1)}+
�

α+β− 2
α−β

�

log (b − a)
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≤ Ḩ(α,β)
X1:n

≤
�

α+β− 1
β−α

�

log n+
�

α+β− 2
α−β

�

log (b − a) .

Similarly we can obtain the upper (lower) bound of Ḩ(α,β)
Xn:n

.

2.1. Generalized quantile information (divergence) measure

Information or divergence measures play an important role in measuring the distance
between two probability distribution functions. Some goodness-of- fit tests provided
based on entropy and information measures, refer to Ebrahimi et al. (2004) and Park
(2005). Let X and Y be two non-negative random variables with density functions f
and g , and survival functions F̄ and Ḡ respectively. Several divergence measures have
been proposed for this purpose which the most fundamental one is Kullback and Leibler
(1951). The information divergence of order (α,β) (Varma, 1966) between two distri-
butions is defined by

Dβ
α (X ,Y ) =

1
α−β

log
∫ ∞

0
f (x)

�

f (x)
g (x)

�α+β−2

d x ; α 6=β,β≥ 1,β− 1<α <β. (15)

When β = 1, Dβ
α (X ,Y ) reduces to Dα(X ,Y ) = 1

α−1 log
∫∞

0 f (x)
�

f (x)
g (x)

�α−1
d x, the

Rényi divergence measure, and when β = 1 and α −→ 1, Dβ
α (X ,Y ) −→ D( f , g ) =

∫∞
0 f (x) log f (x)

g (x)d x is the Kullback-Leibler information between f and g .

Recently, Sankaran et al. (2016) and Kumar and Rani (2018) respectively introduced
quantile versions of the Kullback-Leibler and generalized divergence measure of order
(α,β) and studied their properties.

LEMMA 4. The quantile-based divergence measure of order (α,β) between the distribu-
tion of i th order distribution fi :n and the parent distribution f is given by

Ḑβ
α ( fi :n , f ) =−Ḩ(α,β)

Ui :n
, (16)

where Ui :n is the standard uniform distribution for Xi :n .

PROOF. Analogous to (15), we have

Dβ
α ( fi :n , f ) =

1
α−β

log

�

∫ ∞

0

�

fi :n(x)
f (x)

�α+β−2

fi :n(x)d x

�

.

Following Kumar and Rani (2018), the quantile version of divergence measure of order
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(α,β) for i t h order statistics is defined as

Ḑβ
α ( fi :n , f ) =

1
α−β

× log
�∫ 1

0

(F Q(u))(α+β−1)(i−1)(1− F Q(u))(α+β−1)(n−i)

(B(i , n− i + 1))α+β−1
f (Q(u))dQ(u)

�

=
1

α−β
log

�∫ 1

0

u (α+β−1)(i−1)(1− u)(α+β−1)(n−i)

(B(i , n− i + 1))α+β−1
f (Q(u))q(u)d u

�

=
1

α−β
log

�∫ 1

0

u (α+β−1)(i−1)(1− u)(α+β−1)(n−i)

(B(i , n− i + 1))α+β−1
d u
�

= −Ḩ(α,β)
Ui :n

. (17)

Hence, the quantile-based generalized information between the distribution of order
statistics and the original distribution is distribution free. 2

3. GENERALIZED QUANTILE ENTROPY OF Xi :n FOR RESIDUAL LIFETIME

In the context of reliability and life testing studies when the present age of a component
needs to be incorporated, the entropy measure given in (1) is not applicable to a system
which has survived for some unit of time. Ebrahimi (1996) considered the entropy of
the residual lifetime Xt = [X − t |X > t ] as a dynamic measure of uncertainty given by

H ( f ; t ) =−
∫ ∞

t

f (x)
F̄ (t )

log
�

f (x)
F̄ (t )

�

d x, t > 0. (18)

In analogy to Ebrahimi (1996), Baig and Dar (2008) extended generalized entropy of
order (α, β) for the residual lifetime Xt = [X − t |X > t ] as

H (α,β)( f ; t ) =
1

β−α
log

�∫ ∞

t

f α+β−1(x)
F̄ α+β−1(t )

d x
�

, (19)

and studied many properties of it. Kumar and Rani (2018) introduced a quantile-based
generalized entropy of order (α, β) and its residual version, and studied some proper-
ties of it. Thapliyal and Taneja (2012) introduced generalized residual entropy of order
(α, β) for the i th order statistics, given by

H (α,β)( fi :n ; t ) =
1

β−α
log

 

∫ ∞

t

f α+β−1
i :n (x)

F̄ α+β−1
i :n (t )

d x

!

, (20)

where

F̄i :n(x) =
B̄F (x)(i , n− i + 1)

B(i , n− i + 1)
(21)
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is the survival function of the i th order statistics and

B̄x (a, b ) =
∫ 1

x
ua−1(1− u)b−1d u, 0< x < 1

is the incomplete beta function. For more properties and applications and recent devel-
opments of Equation (20), we refer to Kayal (2014), Kumar (2015) and Kayal (2016). It
is easy to see that the measure (20) generalizes the measure (18) and (19) both.

The quantile version of generalized residual entropy (GRE)of i th order statistics is
defined as

Ḩ(α,β)
Xi :n
(u) = Ḩβ

α (Xi :n ;Q(u))

=
1

β−α
log

¨�

B(i , n− i + 1)
B̄u (i , n− i + 1)

�α ∫ 1

u
(gi (p))

α(q(p))1−αd p

«

,
(22)

where B(i , n−i+1)
B̄u (i , n−i+1)

is the quantile form of survival function F̄i :n(x). An equivalent repre-

sentation of (22) is of the form of

(β−α)Ḩ(α,β)
Xi :n
(u) =

log







1
�

B̄u (i , n− i + 1)
�α+β−1

∫ 1

u
p (α+β−1)(i−1)(1− p)(α+β−1)(n−i)(q(p))2−α−βd p







,

(23)

which is rewritten as

e{(β−α)Ḩ
(α,β)
Xi :n
(u)} �B̄u (i , n− i + 1)

�α+β−1 =
∫ 1

u
p (α+β−1)(i−1)(1− p)(α+β−1)(n−i)(q(p))2−α−βd p.

Differentiating it with respect to u both sides, we obtain

e{(β−α)Ḩ
(α,β)
Xi :n
(u)}

n

(β−α)(Ḩ(α,β)
Xi :n
(u))′

�

B̄u (i , n− i + 1)
�α+β−1

o

−e{(β−α)Ḩ
(α,β)
Xi :n
(u)}

n

(α+β− 1)u i−1(1− u)n−i �B̄u (i , n− i + 1)
�α+β−2

o

=−u (α+β−1)(i−1)(1− u)(α+β−1)(n−i)(q(u))2−α−β.

This gives

(q(u))2−α−β = e{(β−α)Ḩ
(α,β)
Xi :n
(u)} �B̄u (i , n− i + 1)

�α+β−2×
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¦

(α+β− 1)u (i−1)(2−α−β)(1− u)(n−i)(2−α−β)
©

−
(β−α)B̄u (i , n− i + 1)(Ḩ(α,β)

Xi :n
(u))′

u (α+β−1)(i−1)(1− u)(α+β−1)(n−i)
. (24)

Equation (24) provides a direct relationship between quantile density function q(u) and
Ḩ(α,β)

Xi :n
(u), therefore Ḩ(α,β)

Xi :n
(u) uniquely determines the underlying distribution.

The i th order statistic Xi :n represents the lifetime of an (n− i + 1)-out-of-n system
which is a common structure of redundancy and widely used in reliability theory and
survival analysis. It is to be noted that X1:n represents the lifetime of a series system,
whereas Xn:n that of a parallel system. The quantile-based generalized residual entropy
of order (α,β) (QGRE (α,β)), of order statistics (22) for i = 1 and i = n, that are, the
lifetime of the series systems and parallel systems, respectively for several well known
distributions are provided in Table 2.

TABLE 2
QGRE (α,β) of first and last order statistics for some common distributions.

Distribution Ḩ
(α,β)
X1:n

(u) Ḩ
(α,β)
Xn:n

(u)

Uniform = 1
β−α log

�

nα+β−1{(b−a)(1−u)}2−α−β
n(α+β−1)+2−α−β

�

= 1
β−α log

�

(b−a)2−α−β (1−u)n(α+β−1)+2−α−β)

n1−α−β{n(α+β−1)+2−α−β}(1−un )α+β−1

�

Exponential = 1
β−α log

�

(nλ)α+β−2

α+β−1

�

= 1
β−α log

�

B̄u {(α+β−1)(n−1)+1, α+β−1}
n1−α−βλ2−α−β (1−un )α+β−1

�

Pareto-I = 1
β−α log







(na)α+β−1(1−u)
α+β−2

a

{na(α+β−1)+α+β−2}bα+β−2






= 1
β−α log





B̄u {(α+β−1)(n−1)+1, α+β−1+ α+β−2
a }

n1−α−β( a
b )

2−α−β (1−un )α+β−1





Log-logistic = 1
β−α log







B̄u {α+β−1+ (2−α−β)b , n(α+β−1)+ α+β−2
b }

n1−α−β(1−u)n(α+β−1)(ab )2−α−β






= 1
β−α log







B̄u {n(α+β−1)+ 2−α−β
b , α+β−1+ (α+β−2)

b }

n1−α−β (ab )2−α−β (1−un )α+β−1







GPD = 1
β−α log











nα+β−1( b
a+1 )

2−α−β(1−u)
a(α+β−2)

a+1

{n(α+β−1)+ a(α+β−2)
a+1 }











= 1
β−α log





B̄u {(α+β−1)(n−1)+1, (α+β−2)+ 2a+1
a+1 +1}

n1−α−β ( a+1
b )2−α−β(1−un )α+β−1





Finite range = 1
β−α log







(na)α+β−1(1−u)
2−α−β

a

{na(α+β−1)+2−α−β}bα+β−2






= 1
β−α log





B̄u {(α+β−1)(n−1)+1, α+β−1+ 2−α−β
a }

n1−α−β( b
a )
α+β−2(1−un )α+β−1





Power = 1
β−α log







B̄u {α+β−1+ 2−α−β
b , (n−1)(α+β−1)+1}

n1−α−β ( a
b )
α+β−2(1−u)n(α+β−1)






= 1
β−α log











( a
b )

2−α−β (1−u)
n(α+β−1)+ 2−α−β

b

n1−α−β{n(α+β−1)+ 2−α−β
b }(1−un )α+β−1











Govindarajulu = 1
β−α log

�

B̄u {α+β−1+b (2−α−β), (α+β−1)(n−2)+2}
n1−α−β{ab (b+1)}α+β−2(1−u)n(α+β−1)

�

= 1
β−α log

�

B̄u {n(α+β−1)+b (2−α−β), 3−α−β}
n1−α−β{ab (b+1)}α+β−2(1−un )α+β−1

�

4. CHARACTERIZATION BASED ON SAMPLE MINIMA X1:n

Let X1:n and Xn:n be the first (minima) order statistic and last (maxima) order statistic
in a random sample {X1,X2, · · · ,Xn} of size n from a positive and continuous random
variable X . Then the cdf and pdf of first order statistics X1:n are respectively given by

F1:n(x) = 1− F̄ n(x)
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and

f1:n(x) = nF̄ n−1(x) f (x).

Then QGRE (α,β) (23) of first order statistics X1:n is given by

H (α,β)
X1:n

(u) =
1

β−α
log

¨

nα+β−1

(1− u)n(α+β−1)

∫ 1

u
(1− p)(α+β−1)(n−1)(q(p))2−α−βd p

«

. (25)

An important quantile measure useful reliability analysis is the hazard quantile function
defined by

K(u) = h(Q(u)) =
f Q(u)
(1− u)

=
1

(1− u)q(u)
, (26)

where h(x) = f (x)
1−F (x) is the hazard rate of X . By considering a relationship between

the (α,β) and the hazard quantile function K(u) of X1:n , we characterize some specific
lifetime distributions based on the quantile entropy measure (25). We give the following
theorem.

THEOREM 5. Let X1:n be a first order statistics with survival function F̄1:n(x) and haz-
ard quantile function KX1:n

(u). Then

Ḩ(α,β)
X1:n
(u) =

1
β−α

log c +
�

α+β− 2
β−α

�

logKX1:n
(u), (27)

where c is constant, characterize generalized Pareto distribution (GPD) with quantile func-
tion Q(u) = b

a

�

(1− u)−
a

a+1 − 1
�

.

PROOF. The hazard quantile function of sample minima that is X1:n for GPD is
given as

KX1:n
(u) =

f1:n(Q(u))
(1− F (Q(u)))n

=
n

(1− u)q(u)
=

n(a+ 1)(1− u)(
a

a+1 )

b
.

From Table 1, the quantile-based generalized residual entropy of order (α,β) of GPD is

Ḩ(α,β)
X1:n
(u) =

1
β−α

log
n(a+ 1)

n(a+ 1)(α+β− 1)+ a(α+β− 2)

+
�

α+β− 2
β−α

�

log

�

n(a+ 1)(1− u)
a

a+1

b

�

.

This prove the if part of the Theorem. To prove the only if part, let (27) holds. Then
¨

nα+β−1

(1− u)n(α+β−1)

∫ 1

u
(1− p)(α+β−1)(n−1)(q(p))2−α−βd p

«

= c(KX1:n
(u))α+β−2.
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Substituting the value of KX1:n
(u) and simplifying, this gives

n
∫ 1

u
(1− p)(α+β−1)(n−1)(q(p))2−α−βd p = c(1− u)n(α+β−1)−(α+β−2)(q(u))2−α−β.

Differentiating both sides with respect to u, we get

q ′(u)
q(u)

=
�

c{n(α+β− 1)− (α+β− 2)}− n
c(2−α−β)

�

�

1
1− u

�

.

Solving this differential equation, which gives

q(u) =A(1− u)[
n
c −{n(α+β−1)−(α+β−2)}]. 1

2−α−β .

Substituting the value of c = n(a+1)
n(a+1)(α+β−1)+a(α+β−2) , we obtain

q(u) =A(1− u)−(
2a+1
a+1 ) ,

which characterizes the generalized Pareto distribution. Hence proved. 2

COROLLARY 6. Let X1:n be a first order statistics with hazard quantile function KX1:n
(u)

and quantile-based generalized residual entropy Ḩ(α,β)
X1:n
(u) given by

Ḩ(α,β)
X1:n
(u) =

1
β−α

log c +
�

α+β− 2
β−α

�

logKX1:n
(u). (28)

If, and only if for (i) c = 1
α+β−1 , X follows exponential distribution (ii) c < 1

α+β−1 , X

follows Pareto II distribution (iii) c > 1
α+β−1 , X follows finite range distribution.

In the following, we give the characterization result of some well known distributions
in terms of QGRE (α,β) for the sample minima X1:n .

THEOREM 7. For a non-negative random variable X , the relationship

(β−α) d
d u
(Ḩ(α,β)

X1:n
(u)) =

C
(1− u)

, (29)

where C is constant holds, then X has
(i) a uniform distribution if and only if C = α+β− 2,
(ii) a exponential distribution if and only if C = 0,
(iii) a Pareto I distribution if and only if C =−α+β−2

a .
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PROOF. The necessary part follows from the Table 2. For the sufficiency part, let
us assume that (29) holds. Equation (25) can be rewritten as

e (β−α)Ḩ
(α,β)
X1:n
(u)(1− u)n(α+β−1) = nα+β−1

∫ 1

u
(1− p)(α+β−1)(n−1)(q(p))2−α−βd p.

Taking derivative with respect to u, after some algebraic simplification we get

(β−α) d
d u
(Ḩ(α,β)

X1:n
(u)) =

n(α+β− 1)
(1− u)

+
nα+β−1(q(u))2−α−β

(1− u)α+β−1
e (α−β)Ḩ

(α,β)
X1:n
(u). (30)

Using (29) in (30), we obtain

e (α−β)Ḩ
(α,β)
X1:n
(u) =

�

n(α+β− 1)−C
nα+β−1

�

{(1− u)q(u)}α+β−2.

Taking log both sides, this gives

(α−β)Ḩ(α,β)
X1:n
(u) = log

�

n(α+β− 1)−C
nα+β−1

�

+(α+β− 2) log{(1− u)q(u)}.

From (29) we obtain (β−α)Ḩ(α,β)
X1:n
(u) =−C log(1− u)+ logA. Substitute this value in

the above expression we get

(α+β− 2) log q(u) = {C − (α+β− 2)} log(1− u)− logA
�

n(α+β− 1)−C
nα+β−1

�

.

Which leads to

q(u) =A1(1− u){
C

(α+β−2)−1} ,

where A1 =A
�

n(α+β−1)−C
nα+β−1

�
1

2−α−β is constant. Now if C = (α+β−2) and A1 = b−a; then

X follows uniform distribution. If C = 0 and A1 =
1
λ ;λ≥ 0 then X follows exponential

distribution with parameter λ ; and if C = −α+β−2
a and A1 =

b
a , then we have q(u) =

b
a (1− u)−(1+

1
a ), this implies that X follows Pareto I distribution. 2

Another useful measure closely related to hazard QF is the mean residual quantile
function, as given by

M (u) = m(Q(u)) = (1− u)−1
∫ 1

u
(1− p)q(p)d p , (31)
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where m(t ) = E(X − t |X > t ) =
∫∞

t F̄ (x)d x

F̄ (t )
is the mean residual life (MRL) function of

X . Further the relationship between the quantile density function and mean residual
quantile function is given by

q(u) =
M (u)− (1− u)M ′(u)

(1− u)
.

For the sample minima X1:n the above relationship becomes

(1− u)q(u) = nMX1:n
(u)− (1− u)M ′X1:n

(u). (32)

We state a characterization result using the relationship between quantile-based general-
ized residual entropy of order (α,β) and the mean quantile function M (u) of first order
statistics X1:n .

THEOREM 8. Let X1:n be the first order statistics with mean residual quantile function
MX1:n

(u). Then

Ḩ(α,β)
X1:n
(u) =

1
β−α

log c +
�

2−α−β
β−α

�

log MX1:n
(u), (33)

where c is constant, characterize generalized Pareto distribution.

PROOF. The mean residual quantile function of the first order statistics X1:n is given
by

MX1:n
(u) = m(X1:n ;Q(u)) =

∫∞
Q(u) F̄1:n(Q(p))d (Q(p))

F̄1:n(Q(u))

=

∫∞
Q(u)(F̄ (Q(p)))

n d (Q(p))

(F̄ (Q(u)))n
= (1− u)−n

∫ 1

u
(1− p)n q(p)d p. (34)

Thus mean residual quantile function of X1:n having a GPD is M (X1:n ; u) = b (1−u)−
a

a+1

n(a+1)−a .
From Table 1, the quantile-based generalized residual entropy of GPD is

Ḩ(α,β)
X1:n
(u) = 1

β−α log
�

(1− a
n(a+1) )

2−α−β

(α+β−1)+ a(α+β−2)
n(a+1)

�

+
�

2−α−β
β−α

�

log
�

b (1−u)−
a

a+1

n(a+1)−a

�

.

This prove the if part of the Theorem. Assume that (33) holds. Then

nα+β−1
∫ 1

u
(1− p)(α+β−1)(n−1)(q(p))2−α−βd p = c(1− u)n(α+β−1)(MX1:n

(u))2−α−β.
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Differentiating both sides with respect to u, we get

n
�

n
(1− u)q(u)

�α+β−2

= (MX1:n
(u))2−α−β

×
�

nc(α+β− 1)− c(2−α−β)(1− u)
M ′X1:n

(u)

MX1:n
(u)

�

.

This can be rewritten as

n
�

KX1:n
(u)MX1:n

(u)
�α+β−2

=
�

nc(α+β− 1)− c(2−α−β)(1− u)
M ′X1:n

(u)

MX1:n
(u)

�

. (35)

Using (32) in (35), we get
�

KX1:n
(u)MX1:n

(u)
�α+β−1

+ {2c(α+β− 1)− c}KX1:n
(u)MX1:n

(u) = c(2−α−β). (36)

Substituting p(u) =KX1:n
(u)MX1:n

(u) in (36), this gives

(p(u))α+β−1+ c{2(α+β− 1)− 1}p(u) = c(2−α−β),

which leads to p(u) = θ, a constant. This means that KX1:n
(u)MX1:n

(u) = θ. From (32),
we have

n
KX1:n

(u)MX1:n
(u)
= n− (1− u)

M ′X1:n
(u)

MX1:n
(u)

,

which gives

M ′X1:n
(u)

MX1:n
(u)
=

n(1− 1
θ )

(1− u)
.

Solving this differential equation yields

MX1:n
(u) =A(1− u)−n(1− 1

θ ),

which characterizes the GPD for θ=
�

n(a+1)
n(a+1)−a

�

. Hence, we have the required result. 2

5. GENERALIZED QUANTILE ENTROPY OF Xi :n FOR INACTIVITY TIME

In some practical situations, uncertainty is related to past life time rather than future.
Based on this idea, Di Crescenzo and Longobardi (2002) have considered the entropy of
the inactivity time or reversed residual lifetime t X = [t −X |X ≤ t ] given as

H̄ ( f ; t ) =−
∫ t

0

f (x)
F (t )

log
f (x)
F (t )

d x . (37)
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Similarly, the generalized entropy of order (α,β) for inactivity time t X was given by

H̄ (α,β)( f ; t ) =
1

β−α
log

�∫ t

0

f α+β−1(x)
F α+β−1(t )

d x
�

; β 6= α, β− 1<α <β, β≥ 1, (38)

which is extensively studied by Nanda and Paul (2006). The past lifetime random vari-
able t X is related with the reversed hazard rate function defined by K̄F (x) =

f (x)
F (x) . The

quantile versions of reversed hazard rate function is defined as

K̄(u) = K̄(Q(u)) =
f (Q(u))
F (Q(u))

= (uq(u))−1. (39)

The reversed hazard rate function is quite useful in the forensic science, where exact time
of failure (e.g. death in case of human beings) of a unit is of importance.
Analogous to (38), the generalized past entropy (GPE) of i th order statistics Xi :n is de-
fined as

H̄ (α,β)( fi :n ; t ) =
1

β−α
log

 
∫ t

0 ( fi :n(x))
α+β−1d x

(Fi :n(t ))α+β−1

!

; t > 0,

=
1

β−α
log

 
∫ t

0 ( fi :n(x))
α+β−1d x

(BF (t )(i , n− i + 1))α+β−1

!

. (40)

WhereβF (x)(i , n− i+1) is the distribution function of the i th order statistics. In terms
of quantile function (40) can be expressed as follows

Ḩ̄(α,β)
Xi :n
(u) =

1
β−α

log

�

1
(BF (Q(u))(i , n− i + 1))α+β−1

∫ u

0
f α+β−1
i :n (Q(u))d (Q(u))

�

=
1

β−α

× log

�

1

(Bu (i , n− i + 1))α+β−1

∫ u

0

p (α+β−1)(i−1)(1− p)(α+β−1)(n−i)

(B(i , n− i + 1))α+β−1
(q(p))2−α−βd p

�

.

(41)

The measure (41) may be considered as the quantile-based generalized past entropy of order
(α,β) (QGPE (α,β)) measure for i t h order statistics of inactivity time. Last order statis-
tics ia an important case of order statistics. For i = n, we have fn:n(x) = nF n−1(x) f (x)
and Fn:n(x) = (F (x))

n . Thus quantile-based generalized past entropy for sample maxima
Xn:n is defined as

Ḩ̄(α,β)
Xn:n
(u) =

1
β−α

log

�

1

(Bu (n, 1))α+β−1

∫ u

0

p (α+β−1)(n−1)

(B(n, 1))α+β−1
(q(p))2−α−βd p

�

=
1

β−α
log

�

n2(α+β−1)

un(α+β−1)

∫ u

0
p (α+β−1)(n−1)(q(p))2−α−βd p

�

. (42)
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In the following theorem we characterize the power distribution, when Ḩ̄(α,β)
Xn:n
(u) is

expressed in terms of quantile-based reversed hazard rate function. We give the following
result.

THEOREM 9. Let Xn:n denote the last order statistics with survival function F̄n:n(x)
and the reversed hazard quantile function K̄Xn:n

(u), then

Ḩ̄(α,β)
Xn:n
(u) =

1
β−α

log c +
�

α+β− 2
β−α

�

log K̄Xn:n
(u), α+β> 2 (43)

if and only if X follows the power distribution.

PROOF. The reversed hazard quantile function for sample maxima Xn:n of power
distribution is K̄Xn:n

(u) = fn:n (Q(u))
Fn:n (Q(u))

= n f (Q(u))
F (Q(u)) = n(uq(u))−1 = nb

au
1
b

.

Taking c =
�

b nα+β

nb (α+β−1)−(α+β−2)

�

gives the if part of the theorem. To prove the only if

part, consider (43) to be valid. Using (42), it gives

n2(α+β−1)

un(α+β−1)

∫ u

0
p (α+β−1)(n−1)(q(p))2−α−βd p = c(K̄Xn:n

(u))α+β−2.

Substituting K̄Xn:n
(u) = n

uq(u) and simplify, gives

nα+β
∫ u

0
p (α+β−1)(n−1)(q(p))2−α−βd p = c un(α+β−1)−(α+β−2)(q(u))2−α−β.

Taking derivative with respect to u and simplifying, this reduces to

q ′(u)
q(u)

=
�

nα+β− c[n(α+β− 1)− (α+β− 2)]
c(2−α−β)

�

1
u

,

which leads to

q(u) =Au

�

nα+β−c[n(α+β−1)−(α+β−2)]
c(2−α−β)

�

=Au
1
b −1,

which characterizes the power distribution function. 2

REMARK 10. If c =
�

nα+β

n(α+β−1)−(α+β−2)

�

, then Equation (43) is a characterization of

uniform distribution.
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6. CONCLUSION

The quantile-based generalized entropy and generalized information measure of order
(α,β) for order statistics has several advantages. The computation of proposed measures
is quite simple in cases where the distribution functions are not tractable while the quan-
tile functions have simpler forms. Furthermore, there are certain properties of quantile
functions that are not shared by probability distributions. Applications of these proper-
ties give some new results and better insight into the measure that are difficult to obtain
in the conventional approach. The results obtained in this article are general in the sense
that they reduce to some of the results for quantile based Shannon entropy and Rényi
entropy for order statistics when parameters approaches to unity.
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SUMMARY

In the present paper, we propose a quantile version of generalized entropy measure for order
statistics for residual and past lifetimes and study their properties. Lower and upper bound of the
proposed measures are derived. It is shown that the quantile-based generalized information be-
tween i th order statistics and parent random variable is distribution free. The uniform, exponen-
tial, generalized Pareto and finite range distributions, which are commonly used in the reliability
modeling have been characterized in terms of the proposed entropy measure with extreme order
statistics.
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